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Abstract

By the current paper, the solution of partial fractional differential equations of time fractional Heat-
equation is given. The author uses also certain theorems and corollaries on the Laplace transform
for the solution of system of fractional singular integro-differential equations of convolution-type
with the Bessel kernel and system of fractional differential equation, where the fractional derivative
is described in the Caputo sense. Constructive examples are also provided.
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1. Introduction

The time fractional heat equation, which is a mathematical model of a wide range of important
physical phenomena, is a partial differential equation obtained from the classical heat equation by
replacing first time derivative by a fractional derivative of order a, where 0<a<1. In recent years,
many authors including Poldlubny [5], Beyer and Kempfle [7], Schneider and Wyss [9] Huang and
Liu [8] discussed about some problems of homogeneous fractional ordinary differential equations
and homogeneous fractional diffusion equations.

Several methods have been introduced to solve fractional differential equations, the popular
Laplace transform method [1]-[3], the Fourier transform method. In section 2, we recall the
definition of the Caputo fractional integral operator of order & > 0, and Efors’s theorem. In section
3, we use the complex inversion formula for the Laplace transform and also we solve several
examples of integral equation and system of fractional diffusion equations. In section 4, the author
solved time fractional heat-equation in the Caputo sense by using theorems, corollaries and
methods of the Laplace transform.

2. Definitions
Definition 2.1
The fractional derivatives of order & > 0 in the Caputo sense defined as the operator ng‘f t):
U ocm
ng‘f t)= 1 J' f (Tl2mdr ,m-1l<a<m (2.2)
r'm-a) 0 t-2)
Theorem 2.1
The Laplace transform of the Caputo fractional derivative is:
m-1
L{EDSE (t);p3=p“F(s)-D p* 1 ©007) ,m-l<a<m (2.2)
k=0
Proof
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See [5].

Theorem 2.2 (Effros's theorem):
Let Lt {f (t)}=F(s) andassuming that ¢(s),q(s) are analytic functions and:

L{p(t, 7);s}= D(s)e "9, (2.3)

we then have:

Lt{j () p(t.77) dn }=F(q(s)) #(s).
0

(2.4)
Proof
See[2].
Corollary 2.1
If q(s)=+/s , ¢(s)=—1,L{f (t)}=F(s) then:
S
F(s) 1T
1. =L {—=—|exp(—-)f (n)dn;s
N t{ﬁg p(=-,)f (1)dn:s}
2 FWR) =Lt [rexa- Ot (i)
t2tnt 4t
Proof
See[2].
3. Theorems of Laplace Transform
Theorem 3.1
The Complex Inversion Formula of The Laplace transform:
If L{f (t);s}=F(s), then L™{F (s);t} is given by:
~ 1 C+ioo
F()=LHFE)t=-— [ eSF(s)ds (3.1)
271 C—io

and f(t)=0for t <0 , itis also known as Bromwich's integral formula.

Theorem 3.2 (Convolution Theorem)
The convolution of f and g is defined by:

(f o)) =[f @gt-u)du=[f t-w)gu)du (@2
It L{F@O:s}=F(s) . L{g(t)is}=G(s) then L{(F *g)(t):s}=F (5)G (s).

Problem 3.3
Let us solve the following system of fractional singular integro-differential equations of
convolution-type with the modified Bessel function of first kind as kernel:

XcDggl(X)=f1(X)—/1tf) (%)Zl,((Z\/a(X —1))g,(t)dt

XCD(f’gz(x)zfz(x)mz (%)2|K(2,/a(x “t)) g, (t)dt Y
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where g,(0)=9,(0)=0,r>-10< |/1| <land f,(x),f,(x) are known functions.

Solution
In order to solve the above system, by introducing:

g(x)=09,(x)+1g,(x),f (x)=Ff,(x)+if,(x) we can rewrite the above system of
fractional integro- differential equations in the form:

K
a X X —t,o
Do g(x)=f (x)+i (J)(T)Z | (2ya(x -t))g(t)dt (3.3)
where g(0)=0,v>-1,a>0,0<|4|<1.

By applying the Laplace transform on both sides of the above equation term - wise we obtain:

exp(2)
S xK+1

1 1
G(s)= ~Fs)= : F(s) 3.4
o i X6 s*{l- A oo

sG(s)=F(s)+ i

G(s)

SK+1 Sa+K+1exp(—%)

_FO) < (4i)" _ N (4i)"
Y z (a+x+1)m ma =sF (S)Z (a+x+l)m+a+l ma
m=0S exp(-32) m=0S exp(—32)

Besides, by using the fact that:

LRy e, 240, () = (0", = ()

s u+1

by taking the inverse Laplace transform formula of the above term (3.4) yields:
X o y _t lateimia
g(x)= j i) (—) 2 |(a+K+1)m+a(2‘/m a(x —t))f '(t) dt
o o (35)

(a+x+l)m+a

AOTEN"CD P T geme @A)

Finally, by taking the real and imaginary part of the above relation we finally obtain the
solutions of the system in the following forms:
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—t m(a+K+1)+

9,(x) = 2( —20)" j (—) 21 g (asstyea (22Malx —t)f t)alt

_t (2m+1)( i +1)+7
. m 4(2m+1) — ,
Z( ) -[((Zm +1)a I(2m+l)(a+K+1)+a(2\/a(2m +1)(x —t))f,(t)dt
o X m(a+/c+l)+
HLOX G0 1 o ety (292MEX)
(2m+1) (anl) (a+1c+1)+%
_f (O)Z( n"a ((2 +1)a) I(2m+l)(a+,(+1)+a(2«/a(2m +1)x )
similarly we get :
(2m+1) (Zmﬂ)(oz+zc+l)+g
m m+ /
9,(x)= Z( " A j ((2m +1)a 2 (2m+1)(a+K+l)+a(2\/a(2m +1)(x —t))f,(t)dt
X —t m(a+x+l)+ ,
+Z( —23)m j — Zm(wﬁl)m(Z‘/Zma(x —t))f/(t)dt
(2m+1)( +1)+7
(2m+1) 2 P
+f (O)Z( n" 2 " ((2m 1)a) I(2m+1)(0(+1(+1)+a(2 a(2m +1)x )
© X m(a+;(+l)+
MR OO N Vo (arstyra (292MEX)

4, Main Results

The time fractional heat equation, which is a mathematical model of a wide range of important
physical phenomena, is a partial differential equation obtained from the classical heat equation by
replacing first time derivative by a fractional derivative of order o ,where 0<a <1.

Problem 4.1
Solution to non-homogenous partial fractional differential equation (Heat equation):

. l:a>(<x Vo du ) sung®)+ 5 (4.)

where t >0, 0<x <1, 0<a <1, A, f are constants with boundary conditions:
u,(0,t)=0, u(1,t)=t, u(x,0)=0

fD:U (X ’t) -

Solution
By using the one dimensional Laplace transform of equation (4.1) with respect to t, we
obtain:

Foo (6:8)=(67 = F (x,8) =-u G (5)- .

Solving the above equation, leads to:

F(x,s)=Acoshvs*—Ax +Bsinhys*-1x +’UG(S) P . (4.2)
s“—1 s(s*-=21)
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Now, by using the boundary conditions one obtains the unknown constants A , B as follows:
F.(0,s)=0;, B =0

F(ls)_—z, A cosh+/s“ ,1+”G(S) s :iz
s“—-4 s(s“-4) s

Ao 1G(s) B

S cosh\/s -1 (s —A)cosh+/s“ =4 s(s —A)cosh+/s® —

At this point, assuming, (o = 0.5) , relation (4.2) takes the following form:

cosh//s — Ax i G(s) (cosh\/ — A —cosh

52 cosh /s — A N cosh\/\/s_—/I
,Bcosh\/ — AX yij

s(xs — A)cosh/v/s — 2 5(\/— A)

now, we take the inverse Laplace transform of relation (4.3) term wise as follows.

F(x,s)=

(4.3)

First, we invert the following term:

cosh +/~/s — Ax 1 1 coshv/+/s — /lx
s

H, (5) = = .
169 = s? cosh/v/s \/_ Js cosh/+/s 44

cosh/v/s — Ax
x/s_cosh\/\/——;t

By setting Fl(\/S_) = and using corollary (2.1) one has:

s=0
cosh\/ — AX
F (s)= rscoshy/s -4 =0—>
1(8)= s cosh+/s — NER (2k +1) ik ez

Let us calculate the residue ats =0, that is:

cosh/Ax
cosh/1

Res(F (s)exp(st);s =0) =

and the residue at S =S, k=0,123,...

2k +1

(1) (2 +1)zcos(> 1 722)t)

7x ) exp((4—(

Res(F (s)exp(st); s =s, ) = (keZ)
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therefore:

F ep(-L)
Ll (f)} Jro— e
2k +1

2 ¢ DX (2 +)r L i LIV Kodo o 1 cosh\/_ X J

= T gexp(—4t+(z—< 5 (—)dv
&k +1
_oh/ix | 2z (@m0

CK+Lo oot Vo KL, o o
T szo H@)Z”Z exp((/1(2])7r)2t)'(|;exp(—(2\ﬁ (i 2])7r>ﬁ))dv

Now, by letting W :_(2\/_ (1 —(Zk e 2)\[) in the integral above ,we get:
1R F(s )y _
(
coshVx . = (DX (2K +1)z

2k +1 2k +15 2.9 2k +1,,
cosh/2 +2k§0/1—(2k+1)27,2 cos( 2 EX)EXp(M_(Tl) 7y Efe(A( 2 ]) ﬂz)\/t—)

Finally, we obtain the inverse Laplace transform of the H, (s)as follows:
11 F@s s),
5 )}
j{cosh&x 23 (D* 2k +)7
cosh/4 k=0 4 (2k+1)ﬁ2

L—l{

oo P mep (- P a0 (4 B ot

Ctooshyax o2 (DM (k+Dz 2kl 2K oo 2kHl,
Lot 2k§% (2k+1)2 o2 ) fep (- 2 2220 Erfe (A ( . L2 22yt

For the second term in (4 3) we can rewrite it as follows:

G(s) cosh J/s =4 —cosh }
\/— P coshy/+/s —
1 _cosh \/_ A —cosh \/_ /1x
= u(sG(s 0
Ot Sy v “s)
coshy/+/s — 4 —cosh \/_ AX
0
+19 Ok s(\/— /I)cosh\/ ’

Similarly, by using corollary (2.4) we get:
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Js =2 —cosh/+/s — Ax

E (\/s—):cosh

? Js (5 = 2)cosh /s — 4

LHF, (s)} = cos~/Ax —cos/A N exp(At) —exp(At) N
) =

Acosv/A A
L CO o= e (46)
+8k§0 K +1 { 0s( ) — cos( zx)}-

(A- (292 72%) 2k + )7

Following the same procedure, one gets:

_{Fz(«g) cosv/Ax cos\/—
Js icos\/—
+1

L (D exp((a— (22222
48y " +1 cos(2k2+17zx)Erfc(—/1 (2Kt +1)2 PN

k=0 - () 2)(2k +1)7

(4.7)

We may calculate the inverse Laplace transform of the second term as follows:

0 D F,(Ns), o 2(@ LA
LG (5) =g (O) =2 == +ng (=2 = = ng () rL {2 3 g (OL 2 =3 =

after simplifying the above term, we get:
cosy/Ax —cosy/ A

R TRl
o (DK k+1 b, 2K +15 00 2k +1.,
8u> oo ) (gt —mep (- 2 nEfe 4+ G2 iy
= (,1—(72" e ok 2 £ ? ?
2k +
L (D expa— (XM ])2 22
18ug(0) 3 (2k2+17rx)Erfc (—M(Zk;l)zzzz)ﬁ

SRS 2)(2|< )

By following the same procedure, and using Effros theorem for the term:

cosh/+/s — Ax
F3(S) = 4.8
Js (A =+/s)cosh~/v/s — 2 “9
one gets,
2k +1 2 2
» DX exp((A- ()2 7))
L_l{F (s)}= COSO\S/_\/XZ exp(it) Z 2k ) COS(2k +17zx)

A k0 o (Y2, 2)(2k +1)7
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3(\/—) _cosyAx 1

_1 = _
L \/S_ = ol ﬂexp(izt)Erfc( )
2k +1 2 2.2
» (CDF exp(A- ()2 7%)%t)
48 o +1 cos(2k2+17rx)Erf C(-A+ (2k e 2 By 49)

k=0 (A-("2)%x 2)(2k+1)7r

Furthermore, for the term:

L 1 1
s(\/_— /Iexp(/izt)Erfc(—x/zI) /1

finally, the inverse Laplace transform of (4.3) is:

tcosh\/Ex cos AX cos\/_

S T 0
t

2% (Y +1)72 cos (2k2+1ﬂx) [ exp(u—(”z”)zﬂz)zt)arc (—m(z"z”)zﬁz)ﬁ )t
0

ux, t)=

o K
T - 2k+17zx),[g(t e 2 npete 2+ P

H(z—(%”)z;zz)(zk e 2

. (Y op(-(* e
Bug0) X
N e

a0 )Erfo(2+ 2N

1
+ﬂ°"sﬂx (j w2hiw )dw ) 2 exp(2%) Erfe (<)
/1003 A

. (D ep(-( )
ey

2k +1 &k + B
cos( ﬂX)ErfC(—ﬂ+(7l)27T2)\/tr +2 exp(A1) Erfc(-24t )1
k=0 (/1—(—2k2+1)27r2)(2k ) 2 2 /1[ ]

5. Conclusions

Engineering and other areas of sciences can be successfully modeled by the use of fractional
derivatives. That is because of the fact that, a realistic modeling of a physical phenomenon having
dependence not only at the time instant, but also the previous time history can be successfully
achieved by using fractional calculus.

By the present research, we considered the systems of time fractional differential equation (time
fractional in the Caputo sense). The transform method provides powerful method for analyzing
linear systems.We note that within such a new frame work as we have described and developed in
this article, the extensive usage of the integral transform method opens up new and powerful
possibilities, which be more deeply explored in the future publications.
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