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Abstract  
The method called Analytical Modular Dynamics (AMD) is presented within the context of 
Dynamical Energy Budget Theory (DEBT) using Finsler cost functionals. Focus is on how a 
Huxley/Needham allometric law can be a consequence of complicated Finsler dynamics between 
cell populations. The class of 2-dimensional Kropina metrics is fundamental for this. It is proved 
that plastic deformations of energy efficient interactions result in classical symbiosis, parasitism 
and competition, and remain conservative, although less energy efficient than before plastic 
deformation. Central to the discussion are the constant coefficient Volterra-Hamilton systems and 
perturbations of their associated DEBT energy functionals, via the Finsler-Gate Theorem, 
concerned with phenotypic deformation and heterochrony. A model of C.H. Waddington’s 
ontogenetic canalization in the “epigenetic landscape” is presented exhibiting plastic deformation 
of phenotypic character space, using E. Nelson’s stochastic mechanics.  
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1.  Introduction  

Typically, we consider idealized biological cell populations of n different types, including the 
somatic and germ line cells, each producing a chemical compound specific to its type. These 
compounds mediate biochemical changes in the model organism, which we suppose is undergoing 
progressive ontogenetic changes. This approach was developed in the 1990’s to study the evolution 
of colonial organisms. The argument begins by consideration of evolutionary constraints on 
morphological diversity during development and is concerned with population numbers for the cell 
linages, biomass production, energy and cost, including repair and maintenance, within DEBT. One 
major problem considered was to determine possible mechanisms for two separately living cell 
populations to form an integrated colony. Our thinking was strongly influenced by the monograph 
of Leo Buss, The Evolution of Individuality, Princeton U. press, 1987.  Mathematical descriptions 
were provided for community dynamics, from non-interacting populations through interacting 
populations to super-organisms and colonies, using stochastic and deterministic Volterra-Hamilton 
Systems, the mathematically rigorous foundation for Analytical Modular Dynamics (AMD). 

True super-organisms are both individuals and colonies, for example: Siphonophores, eusocial 
insects, (Hymenoptera), and termites (Isoptera), plus a few types of mammals, but less so for 
Coelenterates Scleractinian corals or Octocorals. The Harvard biologist, E.O. Wilson [1] [2], used 
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Ergonomics to obtain the distribution of castes in an ant colony. We incorporate mathematical 
versions of this idea and together with the Division of Labor Principle of W.N. Bekemeshev, a 
Russian expert on invertebrate animals, they form the conceptual basis for a mathematical approach 
to colonial organisms,[3],[4],[6]. Both principles informed our recent work on the Mata-Atlantica 
rainforest of Brazil [5],[47],[51]. 

It is well known that the Serial Endosymbiosis Theory of Lynn Margulis explains how 
Eukaryotes evolved from Protozoa, while Leo Buss’ theory concerns the evolution of metazoans 
from single cells. One result obtained with AMD methods was that the strongest form of division 
of labor, that is, optimality, implies both cooperation and competition between castes, morphotypes 
and cell linages [7].This holds for a restricted class of systems, namely, the  classical constant 
coefficient second order ordinary differential equations (SODE’s) called Volterra-Hamilton 
systems and holds for any number of cell types, [8 ],[9]. Furthermore, it followed that a system 
with three or more cell types disallows third party interactions. That is, distinct cell types i and j 
can’t interact to influence another cell type, k, different from i and j. In addition, the system is 
always unstable in the sense that initially close trajectories diverge over time. These remarkable 
properties suggested we refer to such Volterra-Hamilton systems as, weakly coupled. They were 
the basis for our criticism of the Ancestral Commune Theory of Evolution of Carl Woese, [9], 
subsequently cited in journal, Nature, [45].   

There is the example of environmentally induced phenotypic plasticity in Ambystoma 
salamanders, which are able to grow lungs by switching on a certain gene which permits them to 
begin life on land when their pond life is no longer feasible. This is a well-known example of 
heterochrony of the type known as, neoteny, [12]. The related case of modelling resource 
competition between the salamanders, Ambystoma laterale, and  Ambystoma tremblayi, both living 
in the same watery habitat, the former a sexual parasite on the latter, has not yet been resolved,[8], 
[10].There is the complication that the all-female species, A. laterale,  fertilizes its eggs, with A. 
tremblayi sperm, exclusively, and this is an interesting open problem.  

Heterochrony, is the name given by biologists for phenotypic plasticity involving the suite of 
time-sequencing changes during ontogeny induced by external environmental influences, 
[10],[11],[12].[13]. It should be pointed out, that these are the predominant processes for 
evolutionary change within established body plans or morphologies (Bauplans). To paraphrase 
Prof. Leo Buss, variants arising in clonal cell lineages within a multicellular organism have built 
their epigenetic programs and have stabilized those programs through competition with variants 
that failed to act beneficially for the whole. Changes in the timing of maturation of the germ cell 
lineage and of the somatic cell lineages which have access to heritable traits of those lineages, are 
the heterochronic processes that have dominated evolution of the flora and fauna on Earth for 
billions of years.  

Let us denote by  the population of all cells of type, i, in an individual organism, for example, 
a rice weevil of species, S. oryzae, or a colony of Scleractinian corals, say a member of the genus, 
Acropora. One uses,  ( ), to denote the total amount of  the selected biochemical produced by all 
cells of type i, accumulating within the organism from a fixed starting time, T, up to time, t >T. 
These n variables are taken to be the natural logs of the accumulated biomasses. 

Following V. Voltera (1936) assume the rate of production of  is proportional to, . This is 
expressed (taking the proportionality constants all equal to one) as: 
 
                                                             / = ,        =1, 2, … , .                                                 (1) 

The n idealized cell populations exhibit interactions given by the differential equation system 
                                               /  =  ( , N)  +  +   ( ),                                        (2) 

There are n equations in (2). These include the classical “mass-action equations” 
formulated by the pioneers A. Lotka, V. Volterra,  G. Gause, but here they are more 
general. The equations (1), (2), taken together constitute a Spray in the literature, [8],[19],[20]. 
This just means a solution trajectory starting at a fixed point go in any direction and that for any 
two points, close enough, there will be a unique solution trajectory from one to the other.  
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Biochemical exchanges are described by 3-index symbols ,  in number (each index varies 
from 1 to n independently of the others). The growth rates matrix,  , has often been taken to be a 
constant times the identity matrix, however,  it can have entries which are functions of x. The 
external (possibly noisy) environment is represented by, ( ), and in some studies has been taken 
to be an environmental gradient [14],[15], [16]. We assume e=0 until section 5. Production of 
chemicals for life processes is energy consuming for any organism. The environment may stress 
the organism and it may only be able use its inherent phenotypic plasticity to a limited extent and 
there is only so much ATP to cover the various contingencies which arise during biological 
development. Therefore, there must be minimization, or at least conservation, of the cost of 
production. This is an expression of the Principle of Division of Labor and the Ergonomic Principle 
[3],[1],[2], [17] [18]. Denote this cost formally by F. It may be thought of as a function of three 
things: 

 
(1) amounts ( ′) accumulated up to time t’;  
(2) rates of production  ( ∕ )( ′ )= ( ′ ) > 0;  
(3) time t’ itself. 

Still, there are some basic facts about the formal cost F that need to be postulated. Namely, t- 
dependence is disallowed and: 

(4)  F( ,dx/ )>0   for all vectors   / >0   and   >0 
(5)  F( ,c. / )=  ( , / )  for any positive constant  c 
(6) F(x,y) is bounded above on some positive conical region  of the 2n- dimensional phase space 
{x, dx/dt = y} and is therefore finite valued. Σ is a sub-bundle of the tangent bundle, [19], [20]. 
Thus, if y  Σ, then cy  Σ, given that c 0. This is exactly the positive cone condition.  

Note that (5) means that if the positive rate vector of production y = dx/dt is doubled, the 
positive cost (2) is also doubled. The same thing holds if the rate vector is tripled or quadrupled, 
etc. This will be true, at least for certain time scales and calibration levels, for molecular machinery 
observed in plants, animals, fungi and bacteria, [17], [18]. 

Note: If F is not explicitly dependent on, x, then the right-hand side of (2) is zero, so solutions are 
just straight lines in x-space so the allometric law of Huxley and Needham holds.        

Remark: The chemicals during ontogeny may be secondary compounds used in defense, but they 
are assumed to be in allometric proportion to total biomass produced. Furthermore, after the 
requirements of repair and maintenance are satisfied, the Gross (i.e., Total) production is reduced to 
Net production. An important point is that equations (2) can be converted to Net Growth Equations 
from Gross Production Equations, as they are presented in (2) above. 

It is important to know whether production processes satisfying 1-4 are stable or not. Here, the 
measure of stability, K, concerns whole paths or trajectories, ( ), given by solutions of (2). Those 
paths which start from a point with close x-values might remain close in the future, in which case 
stability in the sense of Jacobi holds. If this is false, production is said to be J- unstable. The 
importance of J-stability may be clarified by three comments: 

(A) Since each of the n categories of biomass  is allometrically related to total biomass. That is,  

                                            ( ) = ln [ ( )]  +   

for a constant matrix, , a constant vector, , with, ( ),  being accumulated biomass in some a 
priori specified time interval, [ T, t], which may be small. If one choice of the n log biomasses 
gives J-stable trajectories, all of the allometrically related “surrogate” variables must also. 
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(B) J- Stability of production holds for a surrogate variable, if and only if,  J-stability holds for 
m(t).  

(C) Reproductive biomass is an n-vector, if there are n cell types in the model. Such a vector has 
components which are simultaneously allometrically related to total biomass for each type (i.e., are 
surrogates) then  J-stability holds. This ensures preservation of cell lineages during ontogeny 
(accept in cases of genetically programed cell death). 

Consider a fixed production trajectory, x ( ), which is a solution of (2). For simplicity, take =2. 
Choose any other trajectory close to C and check to see if it weaves from one side to the other of C. 
If any solution trajectory does this, >0, and J-stability holds. If there is a solution trajectory for 
which this weaving does not happen, then production is  J-unstable. In such cases, close trajectories 
can diverge and never return, [21]. An example of J-unstable trajectories is the set of geodesic 
curves on a trumpet shaped surface (Horn of Gabriel). This surface has J-stability measure =−1. 
But it is not a complete embedding in Euclidian 3-space, because the pole is at infinity. On the 
surface of the sphere of radius one, there is weaving back and forth of any chosen great circle 
through the North pole and any other one close by. These intersect at the North and South poles, 
over and over, and J- stability measure, =1, [22] 

2. Optimal Form of Division of Labor Principle  

The mathematicians, L. Euler and  J.-L. Lagrange, proved a theorem in the 19th century, 
asserting that in n-dimensional coordinate space the production paths, ( )}, which minimize 
Total Cost (the time integral of F between start time and finish time) must be solutions of the 2nd 
order system (1), (2) ,provided the matrix of 2nd order partials of,  
is non-singular. The 2nd order equations, resulting from combining (1) and (2), cover their result, 
but are more general. 

There are consequences from the Euler-Lagrange Theorem: 

(i) The 3-index coefficients G must depend on ∕  , if they have ANY explicit dependence on N. 
In other words, the G’s are homogeneous of degree zero. This means that when interactions 
between cell types do actually depend on cell population sizes,  it is only through their ratios. 

(ii) There is no explicit t-dependence in the G’s.  

Let’s now restrict our attention to the case =2 , introducing, = , and = . One shows that 
the equations (2) can be re-expressed as  

                          /d    =   2{  — } / (  ,       =  dx/dt ,                         (3)                              

a differential equation for the 2nd derivative of y with respect to x which describes the set of points 
( ,y) that are realized in the dynamical process (2). Put another way, it describes the point set of all 
occupied states (x( ),y( )) occurring in an a priori specified time-interval.  

The simplest example of (3) occurs when there is no x-dependence nor y-dependence in , . 
It follows that each G is zero and solutions of (3) are straight lines. This clearly implies the 

                                             /   :    =  + . 

Here, x , is the logarithm of chemical biomass produced by population #1 and y is the same, but for 
#2. 

A system of straight lines is always J- unstable. However, there is an infinite number of systems 
(5) which are  J-stable and satisfy the Huxley/Needham Law. A far from trivial example is given 
below, as 3G-2. 
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 A famous unsolved problem, in Projective Geometry stated by the German mathematician, 
David Hilbert, from his list of 23 problems made in the year 1900, can be understood in terms of 
allometry: 

Hilbert’s 4th Problem:    Characterize the cost functions F (x, d / ) satisfying (3), (4), which yield 
straight lines as the set of occupied states given by (2) above. Put another way, the 4th problem asks 
for all cost functions whose geometries have straight lines as the shortest distances between any 
two points. These geometries called projectively flat are exotic and are not Euclidean, generally, 
and the H/N-law holds. A related, but much easier, question is: 

Under what conditions does the allometric law follow from cost effective cellular dynamics? 

The answer for dimension n with F a quadratic form (i.e., of Euclidean or Riemannian form), 
was given in the 1920’s by H. Weyl, and in 1929, generalized to (2) above, by M. S. Knebelman, 
[23], [24]. The general case was solved 20 years later by L. Berwald, who also settled the 4th 
Problem for the case n = 2, but with (2) assumed to have its 3-index G’s independent of N,[25].  
These special “Berwald cost functionals” have been used to model ecology and evolution of 
colonial organisms, [4], [5[, [8], [9], [31], [46], [48], [52]. [53]. 
 
3. The Finsler-Gate: “Elastic” and “Plastic” Deformations 

The Theorem below concerns a unique set of 8 constant-coefficient second order ordinary 
differential equations (SODE’s), 3 of them,  are geodesics, and all satisfy conservation 
laws. Moreover, the 3 geodesics are elastic deformations, (any one into any of the others), while 
the remaining 5 are plastic deformations of those three. Thus, the coordinate transformations 
describing the plastic deformations are not reversible.  

1) (*) geodesic sprays. They are 
transformable, (any one into any other), via an appropriate coordinate transformation (non-
singular).  They are by definition elastically deformable into each other. This means there 
are reversible transformations converting any of the three G’s into either of the remaining 
two. The equivalence class of these three geodesics defines the Finsler Gate. The geodesics 
equations exhibiting the three interaction patterns are given below. 

2) (**) These 8 are projectively equivalent to straight-line 
geodesics of Cartesian Exactly 5 are obtained by non-reversible coordinate 
transformations of  and are plastic deformations. Together, these 5 
interaction schemes form a set of forking paths, each path leading away from the Gate into 
descriptions using Finsler geometries. 

3) The concept of heterochrony must involve an external influence expressed as a vector 
field, , to be understood as the external “driving force” behind a time-sequencing 
change. The elastic deformations (reversible coordinate changes) are separate from time-
sequencing changes. Moreover, projective equivalence is time-sequencing equivalence, 
plus, any elastic coordinate changes. Projective change is a concept which provides a 
mathematical model of heterochrony. There are two parts to it.  In addition to the time 
change (s→p) along a production trajectory, a transformation of substances produced can 
occur. The reversible coordinate change models this conversion which takes place during 
ontogeny.  

Setting we introduce the total joint production parameter, and use 
  to change (1), (2) into 
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Theorem (The Finsler-Gate)  
 (A)  exactly 3 constant coefficient arrays  
whose (*) solutions,  are geodesics of one of the 3 conformally Minkowski Finsler metrics, 
i.e., where   are certain linear functions of  
(adapted coordinate charts). There are no other 2-dimensional Finsler metrics yielding geodesics in 
(*). The three cost functionals are as follows: 

(i)    = exp {(1/ [(1  +  β)ln   ln },    constant     =  (   + 2 /(  + 1) , 

(ii)   = exp { },    =  4, 

(iii)   =  ] exp{ L arctan( / )},    constant  L   =  4 /(1 + ) . 

The proofs may be found in the appendix of [14] or [9],[47]. 

Each of the coefficient array  which together form the Finsler Gate, GF, yields geodesics for 
each of (i),(ii),(iii). These in turn are classified, up to isometry, by 2 invariants: (1) curvature 
condition, K  =  0, and (2) the  numerical value of J, the Principle Scalar, which varies through all 
the positive real splitting this set into 2 disjoint regions, one for each F. Note that (iii) is the 
only cost functional that allows the Euclidean case, L  =  0. Moreover, the classical ecological 
interactions of competition, parasitism, and mutualism can only be derived from (i) via certain 
plastic deformations, [47].  

  (B) There are 5 constant coefficient arrays  each giving rise to a conservation law. 
There are uniquely associated, 5 Finsler cost functional  each 
constant along solutions  of its corresponding spray, as above, 

 

That is, 

 
along  These  5 are not geodesics but they do conserve cost.  

Let us now display the 3 constant (positive) coefficient geodesics that define the Finsler Gate. 
For each case we adjoin the production equations   d /ds   =    i  ; 

                             (i)         d /ds   +  ( ,    d /ds  +  )  =  0, 

                   (ii)      d   +  (   =  0 ,    d /ds  —  (   +  2  

(iii)     d /ds  +  2   +  [(  —  ( ]  =  0,   d /ds  + 2   +  [(  —  
( ]  =  0. 
 The two plastic deformation equations arising from (i) are: 
(iv)          d /dp  =  —   +    —  ,     d /ds  =  — [   +  ](   — 

, 
where  , , , are positive constants and   — )   +  [   +  ( 1  +  ) ] . Note 
the time-sequencing has changed according to the parameter change, s  p , with: 
                                                 dp/ds  =  A  exp {—  R(x)ds },       R(x)  =  , 

(s), being a solution trajectory in x-space. Such production trajectory sets are 1-dimensional and 
have non-zero curvature vectors. By converting to clock time, t, via the usual formula, dp/dt =  
(1/ )·exp{ t}, one obtains the classical interaction schemes: competition, parasitism and 
mutualism by choosing the appropriate signs for the coefficients. In terms of clock time, t, there 
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will be a linear growth rate term, , added to the right-hand sides ( i  =  1, i  =  2) and,   =  
d /dt, replaces,  in both equations. For example, the competition pattern will have negative 
signs for each quadratic term, so that,   0 and   It is important to realize that this 
competition is special in that there is a (linearly) stable steady-state,  . This is in marked 
contrast to the principle of competitive exclusion, [8, chapter 2], which states that one or the other 
of the two populations will go extinct. In this special instance of competition each population has a 
“refuge” from the other thereby facilitating the stable steady-state. 

In the Master´s Thesis of Prof. S. F. Rutz’ student, C. E. Hirakawa, and in [31], [46], it was 
recognized that evolution, via L. Margulis’ serial endosymbiosis theory, eventually leads to 
mitochondria, yet, started as a parasitic relationship between two populations of microbes of 
special character. The production equations taken for the model were geodesics whose interactions 
were two independent logistics, as in (i) above. Its Finsler cost functional, exp { }·  had a 
conformal factor perturbed from a linear expression to an appropriate quadratic function of,  

which gave rise to x-dependent coefficients modelling Chemical Exchange and naturally 
interpretable as parasitic, [50]. However, that model was not (iv) above, with  and  of opposite 
sign, which is the classical parasite type.  On the other hand, we have the Theorem: Every Constant 
2- spray is Projectively Flat,[35].  

This shows that production for parasitism of classical type is projectively equivalent to the 
double logistic, constant coefficient spray, (i). It turns out that the original model with x-dependent 
interactions is not projectively flat, [46], [49]. This was a great surprise largely because it 
contradicted statements in two published papers of M. Matsumoto and S. B cs , which quote 
(wrongly) a famous theorem of L. Berwald on the 2-dimensional case of Hilbert’s 4th problem. A 
closely related Finsler cost function, was provided as formal remedy for this.  Yet, the original 
model is still viable for modelling symbiosis in the rice weevil, S. oryzae, and its symbiont 
bacterium, Wolbachia, because this symbiocosm has not become highly integrated, as did 
mitochondria, so the H/N law would not be expected to hold. 
 
4. Allometry: Its history and Future 

The experimental work of Sir Joseph Needham, the recognized father of Chemical 
Embryology, [26], went beyond that of Sir Julian Huxley, [27], more concerned with 
morphology than with chemicals produced by vertebrate embryos during ontogenesis. 
Needham believed allometry was a “chemical ground plan” for development, in other words, 
a BAUPLAN. Today, Dr. H. Charles of Université de Lyon 1, and Dr. N. Moran of University 
of Texas at Austin, who research symbiont bacteria in S.oryzae and aphids, respectively, state 
some types of bacterial/insect symbioses obey allometric laws. However, at least one 
important bacterium, Wolbachia, recently involved in dengue fever research because of its 
disruptive effect on reproduction in its hosts, is a notable exception. It is an example of a 
parasitic bacterium and symbiont, which does NOT form organelles. It probably does NOT 
exhibit the Huxley/Needham Law, either.   

It is now time for an example of a stable 2-dimensional dynamics with allometry:  3G-2 is 
the name given to it. The calculations were done by S. F. Rutz and her student, C. E. 
Hirakawa,  using  her software package, FINSLER, [28]. The idea used is to rewrite 
F( ,dy/dp)   as a product,  H ( ,  ∕ ), and expand H in powers of the ratio, ∕   but 
only up to first order approximation. This means that one or the other of the populations, but 
not both, must be considerably smaller than the other. There will be time intervals where this 
assumption holds. All such F’s are called Kropina Metrics, [7],[19],[20],[29], in the literature. 
It has only recently been noticed that they are important in modeling ecology, development  
and evolution. Not a lot is known generally about this class of cost functions so that there is a 
wide open field for future research. It is known that (5) above for Kropina Metrics has right-
hand-side a cubic polynomial in dy/dx, and coefficients depending on x and y, only, 
[19],[30],[31]. In fact, S. F. Rutz, her Phd student, Rinaldo, V. S., Junior and P.L. Antonelli 
are currently applying Finslerian Noise Theory, [14],[19], to Berwald spaces and Wagner 
spaces,[7], [8],[19],[20], in a problem about competition between a food crop and its 
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transgenically modified version,[32],[33]. Wagner spaces include the class of Kropina metric 
spaces, for 2 dimensions. 
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5. The Canalization Idea of Biologist, C. H. Waddington  

Following C.H. Waddington, picture the epigenetic landscape,[34], as a curved surface with a 
deep valley channel down along which a developing embryo roles, bouncing around as it goes, due 
to developmental noise represented by the e(t)- term in (2). The embryo stays more or less in the 
valley because development is canalized, but the valleys may branch off and the embryo may go 
along one or another of these detours subject to noise in the cellular environment. However, there 
must be some significant external input, perhaps a gradient field or the curl of a vector field, simply 
because pure randomness would not increase complexity over evolutionary epochs. The epigenetic 
landscape has a geometry constrained by this external input. For example, situations where 
cooperation between two independent cell lineages directly affects a 3rd, certainly must arise 
during ontogeny, but would never happen mathematically, without external influences. At this 
stage, heterochrony, the time-sequencing change during ontogeny, must play a role. The notion 
combines allometric concepts with external driving forces, both deterministic and stochastic, giving 
rise to changes classified as plastic deformations of the phenotype of a developing embryo. We now 
briefly describe the mathematical theory behind these statements,[35],[36].  

There has been extensive study of organ growth in animals which indicates that the phenotypic 
characters of final adult forms are tightly canalized about their means in the statistical sense. Both 
the distribution of rates of biomass production and total biomass accumulations are of small 
variance as time of full maturation is approached. The classical experimental work of Nobel 
physiologist, Sir Peter Medawar, on embryonic chicken heart tissue showed this canalization 
property, [37]. In fact, Medawar proved that the tissue is well described by a Gompertz growth 
curve, using sound statistical methods. A simple model of developmental noise, which includes the 
role of measurement error, is: 
                                                             dx(t) = N(t)dt 

                                                         dN(t) = -cN(t)dt + .dw(t) , 

where c is the positive growth rate constant and µ is the standard deviation for a zero centered 
normal distribution. If µ = 0 and x(0) and N(0) are positive initial conditions, this system yields 
Gompertz solutions, log[m(t)], m being the total Gompertz biomass measured,  However, the  
model with  yields a divergent variance for x(t) as t →∞ and a finite variance for N(t), [8, 
appendix B], [38]. Even if, –ax.dt, a negative linear form, is added to the right-hand-side of the 
second equation, the divergence problem remains. Therefore, C. H. Waddington’s developmental 
noise is not canalized in this simple, yet reasonable, model. 

However, it is possible to rectify this infinities difficulty using the conservative diffusion theory 
called Nelson Stochastic mechanics, [39]. It is different from regular (i.e., dissipative) diffusion 
because it confines the Brownian particles  to certain regions so it cannot disapate (rather like small 
material masses in random motion within the rings of Saturn). It will be seen that this theory yields 
biomass distributions of castes and morphotypes which are stationary in time. The Nelson 
stochastic mechanics method has been used recently with success in, [48].The first biological 
application was by M. Nagasawa, [42], but see his monograph,[43].  

To begin, take two Gompertzian populations, #1 and #2, like the one above with µ = 0 and 
further assume each has the same rate constant, c. Using the natural production parameter, s, with 
ds = (1/c)exp[ct]•dt, straight line allometry is obtained, an equivalent form of Gompertz growth 
with 2 modes simply expressed as  

                                                   d /ds =  ,  d /ds = 0,    i  

Now let Q(x) be a (sometimes linear) scalar function of  ,  and define the time-change 
called a heterochronic  transformation (s →  p) induced by an external source (x,y).This time-
change is specified along any trajectory, (s), by the line integral of Q:  

                                                        dp/ds = A.exp{-  ds},  
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 where A is an arbitrary constant and 

/d 2 +  (d /dp)(d /dp) = . 

Note that taking Q to be linear, Q =  (summation convention on repeated upper/lower 
indices) implies that the coefficients of Q are (positive) constants .We use this below, yet much of 
the discussion leaves Q  arbitrary. It is further supposed that over time there will result an energy 
conservation mode in which  reduces to  and: 

 1)   (dx/dp)·C = 0 ,     ( Euclidean dot product ) 
 2)    is linear in Q(x). 

 
The first condition ensures vector,  will be the curvature vector for the transformed biomass 

production process. It has to be orthogonal to the trajectory. Also, when it is not zero, it expresses a 
specific deformation of the original trajectory. The second condition allows any function Q(x) to 
have an additive effect on a transformed one, that is, transformation by Q and by another Q* will 
be the same as that by, Q + Q*. 

These two conditions combine to precisely define the notion of an Adapted Heterochronic 
Transformation, (AHT). It is a theorem that the energy quantity within DEBT : 

 
                                                       2E = exp {2Q(x)}[ (  + ( ] 

 is constant along any solution  and solutions are minimizing in the Euler-Lagrange 
sense,[38],[39]. 

 We compute the curvature/deformation vector components for arbitrary Q to be 

                                                               = (  – ( )( ) , 

                                                               = (  – ( ) ) , 

  

    with                                               = d /dp,           = d /dp, 

                                                   d /dp   +   (   +   ( )( ) =  , 

                                                   d /dp   +   (   + ( )( ) =  . 

After an initial (AHT) adaptation the system may respond to further external influences, either 
noisy or deterministic. For example, a gradient field arising from sustained nutritional intake may 
provide an energy surge contributing to enhanced cellular production. This may be expressed by 
adding, respectively, to the first and second right-hand-side components, -a.gra (Q)  and  -
a.gra (Q)  for some positive constant denoted, a. Another external effect that can be added is 
noise. If Nelson’s stochastic mechanics is used there will result distributions stationary in time over 
the production space. This is a version of Waddington’s canalization. We will now briefly describe 
this method. The system of Euler-Lagrange equations are 

                                      -a  = d /dp + 2 (   + [(   ( ],   * 

                                     -a  = d /dp + 2 (  +   [(  ( ],   ** 

with a linear Q  function. If we set, a = 0, these equations, adjoined with  = d /dp, become 
geodesics of the Riemannian geometry( J=0) whose arc-length functional is just the square root of 
the energy expression 2E, above, namely, 
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                                                dp = exp{Q(x)}.√[(d  + (d ]. 

Furthermore, we can define a potential V(x) by: 
 

                                                          V(x) = (a/2) exp{2Q(x)}, 
whose gradient is: 
                                                                 V(x) = a ,  
where, 
                                                             (x) = exp{2Q(x)} , 
is the inverse matrix, i. e., 
                                                                   .  =  
 

Note that the energy expression, 2E, above can be written as the sum of quadratic differential 
forms (an averaging over the 2 independent modes of change, d  and d , 

                                                               (dp  = d d , 

and that the curvature/stability measure, K, is actually the Riemann scalar curvature, R, of classical 
Riemannian geometry. It is completely specified by the matrix, g, and its partial derivatives with 
respect to , up to 2nd order, [40],[41]. 

Using the calculus of variations to obtain the Euler–Lagrange equations for fixed (starting time 
and finishing time)-variation of the integral: 

                                       [(½)exp{2Q(x)}·{ (d /dt  +  (d /dt } – V(x) ] dt , 

the system above with the gradient on the right-hand-side is obtained. 

In order to bring noise into this formalism one considers the Nelson Expectation,[42],[43], of 
the above expression, namely, 

                                          EN{∫ [(1/2). å  å  – V(a(t))].dt} 

defined by the infinitesimal generator, which is an operator of the form 

                                                            (1/2)µ.  + grad·b(x,t), 

using the g- Laplacian (relative to Riemannian geometry  for, dp, above) and where a(t) and its dot 
derivative form an inhomogeneous Markov diffusion (the circle dot indicates the velocity) with 
initial time density ρ(x,t’) and initial time drift vector b(x,t’). The Nelson stochastic variation of 
B(a), (with  drift variation vanishing at initial and final times) gives the Newton-Nelson Equation: 

                                                ½( DD* + D*D)(a(t)) = -grad V(a(t)), 

with:                                           DY = Lim (1/h)EN{ Y(t + h) – Y(t)│ }, 

as h→ 0 from the right and, likewise, 

                                                   D*Y = Lim (1/h)EN{ Y(t) – Y(t – h)│ }, 

as h→ 0 from the right. 

Here,  and  are the future and past sigma algebras  

                                                                    = {a(s)│ t ≤ s}, 

                                                                    = {a(s)│ t ≥ s}. 
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The fundamental result in Nelson mechanics is that the Newton-Nelson equation is equivalent to 
the partial differential equation: 

                                            i(√µ)∂Θ(x,t)/∂t = [- (½)µ   + V(x) - (µ/12)K]Θ(x,t), 

where i is the unit length imaginary number. Furthermore, this equation is of Schr dinger type 
with: 
 
                                             b(x,t) = √µ.(Im + RE)[(1/Θ(x,t)).gradΘ(x,t)], 
and: 
                                                                    ρ(x,t) = (x,t) , 
the square of the complex modulus of Θ. The quantity, (1/2)   

The so-called Stationary Solutions, are of the form: 

                                                                Θ(x,t) = exp{-iגt}( )(x), 

and they solve the eigenvalue problems for eigenvalues ,  

                                         — (1/2)µ. ( (x)) + V(x) (x) – (µ/12).K. (x) = ג (x). 

 In the linear case of Q(x) it is readily found that, K = 0. Because there is a coordinate 
transformation from ( , ) to polar coordinates (r,  the starred equations above can be 
written: 

                                                       -  r(d /ds   =  -kr 

                                                 +   (2/r) (dr/ds)(d   =  0 

where       k  =  a(   +  and    s(t)  =  A – B.exp{-     and     r  =  exp{Q}  ,   = ( ·(-
), the latter being a Euclidean dot product. 

It now follows that the eigenvalue problem can be written: 

                                            (1/2)µ (r)   +  (k/2) (r)  =  (r). 
 

This is a discrete eigenvalue problem whose lowest eigenvalue is   = (  with 
corresponding eigendensity: 
    
                                          = exp{-(1/2)√[a/µ] , 
 
 which is well known. The rest of the eigenvalues are given by   = √[aµ](n  +  1) while the 
corresponding eigenfunctions become very complicated and represent distributions of allometric 
variables of higher and higher energy,[42],[43],[44].The distributions can be compared to mountain 
ranges. As  increases through discrete values the mountain peaks increase in number exhibiting 
greater variability in phenotypic expression. The publications,[15],[42],[43], [48] contain more 
information on stochastic mechanics. 
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