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Abstract 

In this paper, a predator-prey model with Holling type II response function is proposed and 

analyzed. The model is characterized by a couple of system of first order non-linear 

differential equations. The equilibrium points are computed, boundedness and criteria for 

stability of the system are obtained.  
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1.  Introduction 

There is an extensive literature concerned with the dynamical relationship between predator and 

prey due to its universal existence and importance. Mathematical modeling provides an effective 

tool in the study of contemporary population ecology [1]-[3]. In population dynamics, the 

functional response of predator to prey density refers to the change in the density of prey attacked 

per unit time per predator as the prey density changes [4]. 

Although the prey-predator theory has seen much progress, many long standing mathematical 

and ecological problems remain open [5]-[11]. 

 

Consider the prey-predator system: 

 

 (1.1) 

 

where x, y denote prey and predator population respectively at any time t, and r , k, , , , δ are 

all positive constants. Here,   represents the intrinsic growth rate and  the carrying capacity of 

the prey,    is the death rate of the predator;   is the maximum number of prey that can be eaten 

by each predator in unit time;  is the density of prey necessary to achieve one half that rate;  is 

the conversion factor denoting the number of newly born predators for each captured prey. The 

term   denotes the functional response of the predator.  

 

2.   Basic Results 

2.1 Boundedness of the System 

 

Theorem 2.1.1 

All the solutions of system (1.1) are bounded. 

 

Proof:   

Define the function  . Then : 
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For , we have: 

 

  

Now if we choose  ; then   is bounded for all . 

Thus, we choose  , such that    . 

 

Applying the theory of differential inequality [12] we obtain: 

 

 
 

which, up on letting , yields  .  

So, we have that all the solutions of system (1) that start   are confined to the origin A, where 

, for any . 

 

2.2 Equilibria 

The positive equilibria of model (1.1) can be obtained by solving the following equations: 

 

 

 

 
 

All the equilibria of model (1.1) are: 
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For the existence of positive equilibrium both    and  1
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 must hold. 

2.3 Stability Analysis 

 

In this section we will consider the stability properties of the equilibria of (1.1). Stability of 

equilibrium points is investigated by finding the Jacobean matrices for each equilibrium points. 

     

Now: 
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From this we have, ,  ,  and 

  

 

where: 

 

, and    

     

The eigenvalues of this system are roots of the equation . Therefore, 

 is unstable (saddle).  is locally asymptotically stable when  

because, Jacobean matrix of , has negative value if  and unstable (saddle) 

when   .  

 

Remark: When both  , and  are saddle, the system is persistent [14].   

Proposition 2.3.1  

Suppose    and  , then  is locally asymptotically stable if 

  and  . 

 

Proof:  

Now A will be negative if  . From this it is clear that 

if  , then    is locally asymptotically stable.  

 

Remark  

If , then the system enters into Hopf type small amplitude periodic 

solutions (limit cycles) near  . 

 

2.4 Existance of Limit Cycle 

In two dimensions, it is well known for prey-predator systems that the existence and stability of 

a limit cycle is related to the existence and stability of a positive equilibrium. We assume that a 

positive equilibrium exists, for otherwise the predator population tends to extinction [13].  
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If the equilibrium is asymptotically stable, there may exist limit cycles, the innermost of which 

must be unstable from the inside and the outermost of which must be stable from the outside. 

Besides, if the limit cycles do not exist in this case, the equilibrium is globally asymptotically 

stable. Also, if the positive equilibrium exists and is unstable, there must occur at least one limit 

cycle. 

 

By the present subsection, we shall prove that system (1.1) has unique stable limit cycle, when 

 becomes locally unstable. 

 

Let us consider system (1.1) in the form: 

 

      (2.1) 

 

                    

 

where: . We will prove the following theorem 

regard uniqueness of limit cycle of this system. 

 

Lemma 2.4.1  

Suppose in system (2.1),   in . The 

system (2) has exactly one limit cycle which is globally asymptotically stable with respect to the set 

 

 

Theorem 2.4.1  

If , then system (1) has exactly one limit cycle which is globally 

asymptotically stable with respect to the set  . 

 

Proof:  

This will be equivalent to proving: 

 

 
 

Equivalently,   , 

where: . It is equivalent to proving   or  

That is if :  .  

The equality holds if and only if    

This completes the proof. 
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3.  Conclusions 

 By the current paper we considered a prey-predator system assuming that the predator response 

is of Holling type II. We gave conditions for existence and stability of the equilibria and persistent 

criteria for the system. Besides, we proved that exactly one stable limit cycle occurs in this system 

when the positive equilibrium is unstable. This proof also enables us to conclude that local 

asymptotic stability of the positive equilibrium implies its global asymptotic stability.  
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