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Abstract

In this paper, a predator-prey model with Holling type Il response function is proposed and
analyzed. The model is characterized by a couple of system of first order non-linear
differential equations. The equilibrium points are computed, boundedness and criteria for
stability of the system are obtained.
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1. Introduction

There is an extensive literature concerned with the dynamical relationship between predator and
prey due to its universal existence and importance. Mathematical modeling provides an effective
tool in the study of contemporary population ecology [1]-[3]. In population dynamics, the
functional response of predator to prey density refers to the change in the density of prey attacked
per unit time per predator as the prey density changes [4].

Although the prey-predator theory has seen much progress, many long standing mathematical
and ecological problems remain open [5]-[11].

Consider the prey-predator system:

dx__ _xy axy ;
E_Tx(i k:] 14nx F(x.) (L.1)

EE._ A i x ;
dr_}( S+1+nx] Glx, )

where X, y denote prey and predator population respectively at any time t, and r, k, s, &, 1, J are
all positive constants. Here, 7 represents the intrinsic growth rate and k the carrying capacity of
the prey, = is the death rate of the predator; E is the maximum number of prey that can be eaten

by each predator in unit time; s the density of prey necessary to achieve one half that rate; & is

the conversion factor denoting the number of newly born predators for each captured prey. The
term —— denotes the functional response of the predator.

{(1+nx)

2. Basic Results
2.1 Boundedness of the System

Theorem 2.1.1
All the solutions of system (1.1) are bounded.

Proof:
Define the function z = x + (1,/8)y. Then:
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dz dx 1 dy x Ly K ik 51
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For u == 0, we have:

E-I—uz < ;—r[u—l-?“]: —%(s—u]
Now if we choose u < s; then 4—’; (u+r)*— % (s —u) is bounded for all (x,¥) € R:.
Thus, we choose 717 = 0, such that f + uz < 1.
Applying the theory of differential inequality [12] we obtain:
0< 2(x,y) < =(1— &™) + 2(x(0), y(0))e ™

which, up on letting t — o2, yields 0 < z < G}

So, we have that all the solutions of system (1) that start Ri are confined to the origin A, where
o 2 " = 1
A={(x,y)ER:z u+s},f0rany5:=~lil.

2.2 Equilibria
The positive equilibria of model (1.1) can be obtained by solving the following equations:
o=
k 1+nx
adx
_S =
1+ nx

All the equilibria of model (1.1) are:

E,(0,0), E;(k,0),and E,(x*y")

. . ro[k(da—sn)—s
where: X" =—— and X =— T
(6a—sn) k | (Sa—sn)
For the existence of positive equilibrium both da — sn = 0 and 5 <1 must hold.

(da—sn)
2.3 Stability Analysis

In this section we will consider the stability properties of the equilibria of (1.1). Stability of
equilibrium points is investigated by finding the Jacobean matrices for each equilibrium points.

Now:
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. 2rx oyl +nx) — anxy oxX
(Ry) F(xy)) k 1+ nx)? 1+ nx
(G (%) G,(xYy)) ad(L+nx) — andx g, oK
(1+ nx)? 1+ nx
. _fr 0 -r __:,w
From this we have, I(Eﬁ]—(n ] J(E,) = [ ¢ and
- 0 —s+—
ritrin
_ (A B
1E)=(7 o)
where:
A=p-_X_= _ T (k(fa — sn) —s),

k (fo—sn) kefa

B= —“'E,and c =i[k[:§'¢x—m] —5)

The eigenvalues of this system are roots of the equation (r — A)(—4 —s) = 0. Therefore,
E,(0,0) is unstable (saddle). E,(k,0) is locally asymptotically stable when ——— =1

kida—ns)

because, Jacobean matrix of E;(k,0), has negative value if # = 1 and unstable (saddle)

?’!3}
w k':ﬂ‘ﬂf_nﬂ'} ’

Remark: When both E;(0,0) , and E, (k,0) are saddle, the system is persistent [14].

Proposition 2.3.1
Suppose det(E,) = —BC and tr(E,) = A, then E, is locally asymptotically stable if

—BC>=0and 4 =< 0.

Proof:

Now A will be negative if — +— = 1. From this it is clear that
kl(&a—sn) ken(8a—=n)

if —— 42 = 1 ,then E, is locally asymptotically stable.

k(fa—an) ken(fa—sn)

Remark )
If = +—= = 1, then the system enters into Hopf type small amplitude periodic

k(fa—=n) kn(fa—sn)

solutions (limit cycles) near E,.

2.4 Existance of Limit Cycle

In two dimensions, it is well known for prey-predator systems that the existence and stability of
a limit cycle is related to the existence and stability of a positive equilibrium. We assume that a
positive equilibrium exists, for otherwise the predator population tends to extinction [13].
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If the equilibrium is asymptotically stable, there may exist limit cycles, the innermost of which
must be unstable from the inside and the outermost of which must be stable from the outside.
Besides, if the limit cycles do not exist in this case, the equilibrium is globally asymptotically
stable. Also, if the positive equilibrium exists and is unstable, there must occur at least one limit
cycle.

By the present subsection, we shall prove that system (1.1) has unique stable limit cycle, when
E, becomes locally unstable.

Let us consider system (1.1) in the form:

dx
o —xg(x) —yp(x), x(0)>0 (2.1)
Z=y(-s+ax®), yO)>0

where: g(x) =r (1 - i), plx) = % , qlx) = ;% We will prove the following theorem

regard uniqueness of limit cycle of this system.

Lemma 2.4.1 _
g l::r]l+grl:::']l—:rgr|::r]|ﬂ

Suppose in system (2.1), :—I( Fm) <0in0<x<x*andx* <x <k. The

—st+gqix)

system (2) has exactly one limit cycle which is globally asymptotically stable with respect to the set
{(x,¥):x =0,y = ON{E, (x".¥")}

Theorem 2.4.1 )
If - + e = 1, then system (1) has exactly one limit cycle which is globally

k(fx—sn) kenlfo—sn)

asymptotically stable with respect to the set {(x, ¥):x = 0,¥ = OI\{E, (x*.v*)}.

Proof:
This will be equivalent to proving:

d (x(1-7)+r(1-F)-r0-Dizm
dx Seex

. d x|:21+‘:—k}
Equivalently, - # =0,

K] . . . - k—‘_ k_‘:
where: 4 = so_ Itis equivalent to proving (x — A)° + ,1(

;)—Azzﬂor L=

- -
= =

.. = Se
Thatisif: =" + T —— = 1L
The equality holds if and only if ——=—+ knl,;;‘_m} =1.

This completes the proof.
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3. Conclusions

By the current paper we considered a prey-predator system assuming that the predator response

is of Holling type Il. We gave conditions for existence and stability of the equilibria and persistent
criteria for the system. Besides, we proved that exactly one stable limit cycle occurs in this system
when the positive equilibrium is unstable. This proof also enables us to conclude that local
asymptotic stability of the positive equilibrium implies its global asymptotic stability.
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