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Abstract 
This work introduces a new decomposition method (NDM) for solving nonlinear fractional initial 
value problems by employing a method proposed by both Elzaki [1] and Adomian decomposition 
method. The suggested strategy is based on a simple modification of the Adomian decomposition 
method, in which is combined with the transformation described in [1] for treating the fractional 
derivatives in the Caputo sense. Some examples to validate this method was introduced, in which 
the explicit approximate solution is compared to an exact solution or the approximate solution 
calculated by four-order Runge-Kutta method (RK4).  
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1. Introduction 

Over the last years, fractional differential equations have increased much consideration because 
of broad utilization in the mathematical modelling of physical problems. These are a generalization 
of classical integer order ordinary differential equations, are increasingly used to address the needs 
of problems in fluid mechanics, biology, engineering and other applications [2]-[4]. It is not 
obvious that an exact solution of these problem types could be calculated. Generally, the numerical 
solutions can be derived. Various methods have been employed to solve fractional differential 
equations. As example, Laplace transform method [5], [6], Fourier transforms method [7], 
Adomain decomposition method [7], [8], [10]- [12], and the new transform method [13]- [15]. The 
aim of the present paper is to use the NDM, in order to provide explicit approximate solutions for 
further nonlinear fractional initial value problems. The proposed solutions are highly in agreement 
with the exact solutions that we could calculate (integer order), or Runge-Kutta (RK4) numerical 
solutions.    
 
2. Fractional Calculus 
 

We introduce in this section, a general operator of integration and differentiation using the 
Riemann-Liouville then Caputo fractional definitions.  
 
Definition 2.1  
A real function  is said to be in space 0>);( xxf   ; C  if there exists a real number >p , 

such that , where )(= 1 tft p)(tf   0,)(1 Ctf , and it is said to be in the space  if and only if 

.  

nC

  , nCf n


 
Definition 2.2  
The Riemann-Liouville fractional integral operator of order 0> , is defined as follows: 
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                        0,>  ,   
1

= 1

0



 dvvfvttfJ

t 
                                                  (2.1) 

Definition 2.3 
Consider a function  and Cf  1 . The fractional derivative of  tf  in the Caputo sense is 

defined as: , for   ftfD m  t mDJ m = 0,>,,<1 tmm    and   mC 1f
 
Caputo fractional derivative starting to compute an ordinary derivative then a fractional integral.  

3.  New Transform  
Building on its valuable properties, the proposed transform has as of now demonstrated much 

efficacy. It is uncovered that it can take care of nonlinear differential problems resulting from some 
physical issues. Among those are, for example, solving fractional Navier-Stokes equations [16] and 
proposed an analytic solution of two-dimensional coupled differential Burger’s equation [17]. The 
basic definitions of this transformation is defined as follows, the new transform of the function 

 is:  )(tf

                               0.>,)(=)(=)(
0

tvTdtetfvtfE v

t




                                         (3.1) 

  
Theorem 3.1  [13] 
Let  be the transform (3.1) of the derivative of . Then,  )(vT  )(tf

           1,0=(0)
)(

=)()( 2
1

0=

 


 nfv
v

vT
vTiifv

v

vT
vTi kkn

n

k
n

n  

where  is the transform (3.1) of the nth derivative of the function  vT n  .tf   
  

The transform (3.1) can certainly handle all problems that are ordinarily handled by the well-
recognized and extensively used Laplace transform. Indeed, as the next theorem shows the duality 
between the transform (3.1) and Laplace transform  .sF   
 
Theorem 3.2  [14], [15] 

Let :                 
    














0,1

,<:,0>,,
=

/

21
j

ikt

tif

MetfthatsuchkkMtf
Atf  

Then with Laplace transform  and the transform (3.1))(sF  vT  of  tf , we obtain;   

                             •   







v
FvvT

1
= .  

                             •   







s
TssF

1
= .  

  
  

Theorem 3.3  

If ,  ,<1 Nmmm   then the transform (3.1) of the fractional derivative  is,   tfD
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(0)
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where  is the transform (3.1) of   )(vT ).(tf
  

Proof. Laplace transform of the fractional derivative is: 
 

   0,>(0))(= 1)(1

0=
tsfsFstfD kkm

k

 

 
and from Theorem 3.2, we have;       
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4.  Algorithm of the Method 
 

The ADM is used to provide approximate answers for nonlinear problems in terms of 
convergent series with easily computable components. In the current section we employ the NDM 
to discuss about problems. To express the basic thought, let us study the following fractional 
differential equation,  

 

                                             (4.1) 
  ,<1,0>,)(=)(),(

)()()()()( 01
1)(

1
)(

mmttftutuN

tuatuatuatuatuD m
m

m
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Subject to the initial conditions,  

                                                                                                 (4.2) 0,1,2,...=,=(0))( ibu i
i

where  are known real constants, is a nonlinear operator and  is known function. The 

equation (4.1) is transformed into the following system: 
ii ba , N )(tf

  

                                            (4.3) 
  0)(=)(),(

)()()()()( 01
1)(

1
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Subject to the initial conditions,  

                                                                                       (4.4) 1.,0,1,2,==(0))( mibu i
i 

  
Taking the transform (3.1) of the equation (4.3), to obtain, 
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Applying the theorem 3.4, and applying the formula of the transform (3.1), we fix;  

 29



T. M. Elzaki,  M. Chamekh 

 
      

      ,)(),()()(

)()()((0)=)(
1

01

1)(
1

)(_2
1

0=

tutuNEtuEatuEa

tuEatuEatfEvftuE
v

m
m

m
m

k
m

k



 









 




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The new decomposition method represents the solution as an infinite series  

                                                                                                      (4.6) ).(=)(
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 are Adomian polynomials, 
  

Substituting (4.6), (4.7) and (4.8), into (4.5), to get;  
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The iterations are defined by the recursive relations;  
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5.  Numerical Results 
 

In this section we illustrate some examples presented to explain the method. 
 
Example 1. 
In this example, a fractional Riccati equation is considered,  

                                                                          (5.1) 1.<00,),(1=)( 2   ttutuD
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We apply the proposed algorithm. Take the transform (3.1) of the equation (5.1), to get;  
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The new decomposition series (4.9) has the form,  
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Considering the initial conditions, then we can find; 
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If 1=  we obtain:  
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This results from the NDM when 1=  match the exact solution  
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53 tt
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Thus, the proposed method is a very effective and accurate method that can be utilized to 

provide analytical results for nonlinear fractional differential equations.  

Example 2. 
Look at the following fractional nonlinear equation,  
 

                                                    (5.2) 1,<00,),(0.8)(0.1=)( 2   ttututuD
with the initial condition,  

                                                                                                                   (5.3) 0.=(0)u
  
Take the transform (3.1) of the equation (5.2) and use the initial conditions (5.3), and so we 

suffer;  

  )(0.8)]([0.1=)]([ 22 tuEvtuEvvtuE    
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According to the relation (4.9), we have the new decomposition series in the form,  
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For this example, when 1= , that is easy to calculate the exact solution for this example, but 

we obtain a solution with a complicate expression. We obtained a good agreement for only two-
steps of NDM.  

 
 

   
 

Fig.1  Comparison of the approximation solution ,  and  with the exact solution for 0U 1U 2U 1=  

(Example 2.). 
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                 Fig. 2 Relative error of two step NDM when 1=  (Example 2.). 
 

 
   

        Fig. 3 The different approximate solution for some value of   (Example 2.). 
 

Fig1. shows the comparison between the exact solution for 1=  and some first approximation 

solution  of NDM, with . In Fig. 2, the relative error of NDM is presented. The 

different solutions according some values of 

nU i

n

in uU  0=
=

  are presented the Fig.3.  
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 Example 3. 
 In this example a Van der Pol equation is considered with a fractional derivative,  
 

                                   (5.4) 2,<0where0)()()()(1=)( 2   ttututututuD
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 1.=(0)0,=(0) uu                                                                                                         (5.5) 
  
Take the transform (3.1) of equation (5.4), making use of the initial conditions (5.5). And 

relation (4.9), we have the new  decomposition method in the form,  
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Fig. 4 The different approximate solution for some value of 2,1.5,0.75=  and  presented in 

solid lines, adding an approximate solution calculated by RK4 for 

0.55
2=  in diamond markers (Example 3.). 
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For 2= , it is found in Fig. 4 that the outcome obtained by using the NDM with that held by 
the fourth-order Runge-Kutta (RK4) method had accurate. In addition, we also note that solution 
changes the concavity according to 1<  or 1> .  
 
6. Conclusions 
 

 This study is to suggest an efficient algorithm for the solution of nonlinear fractional initial 
value problems. The Adomian decomposition method has been recognized as a potent technique 
for solving many nonlinear differential equations. In this work, a combined method that groups 
together the transform (3.1) and Adomian decomposition are discussed to finding an explicit 
approximate solution for nonlinear fractional initial value problems. We have noted the simplicity 
and the performance of EADM particularly if 1=  where the approximate solution is compared 
to the exact solution or the RK4 one. For a future project, we will interest to extend the NDM for 
nonlinear fractional PDE of the higher order. 
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