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Abstract

This work introduces a new decomposition method (NDM) for solving nonlinear fractional initial
value problems by employing a method proposed by both Elzaki [1] and Adomian decomposition
method. The suggested strategy is based on a simple modification of the Adomian decomposition
method, in which is combined with the transformation described in [1] for treating the fractional
derivatives in the Caputo sense. Some examples to validate this method was introduced, in which
the explicit approximate solution is compared to an exact solution or the approximate solution
calculated by four-order Runge-Kutta method (RK4).
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1. Introduction

Over the last years, fractional differential equations have increased much consideration because
of broad utilization in the mathematical modelling of physical problems. These are a generalization
of classical integer order ordinary differential equations, are increasingly used to address the needs
of problems in fluid mechanics, biology, engineering and other applications [2]-[4]. It is not
obvious that an exact solution of these problem types could be calculated. Generally, the numerical
solutions can be derived. Various methods have been employed to solve fractional differential
equations. As example, Laplace transform method [5], [6], Fourier transforms method [7],
Adomain decomposition method [7], [8], [10]- [12], and the new transform method [13]- [15]. The
aim of the present paper is to use the NDM, in order to provide explicit approximate solutions for
further nonlinear fractional initial value problems. The proposed solutions are highly in agreement
with the exact solutions that we could calculate (integer order), or Runge-Kutta (RK4) numerical
solutions.

2. Fractional Calculus

We introduce in this section, a general operator of integration and differentiation using the
Riemann-Liouville then Caputo fractional definitions.

Definition 2.1
A real function f(x);x > 0 is said to be in space C ; u €P if there exists a real number p > x,
such that f (t)=t" f,(t), where f, (t) e C(O,OO), and it is said to be in the space C} if and only if

f”eC#,neN.

Definition 2.2
The Riemann-Liouville fractional integral operator of order « >0, is defined as follows:
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Jof(t)= ﬁ jot (t-v)* f(v)dv, @ >0, 2.1)

Definition 2.3
Consider a function f € C, and x> -1. The fractional derivative of f(t) in the Caputo sense is

defined as: D“f(t): Jm‘“Dmf(t),for m-1<a<mmeN,t>0, and feC"

Caputo fractional derivative starting to compute an ordinary derivative then a fractional integral.

3. New Transform

Building on its valuable properties, the proposed transform has as of now demonstrated much
efficacy. It is uncovered that it can take care of nonlinear differential problems resulting from some
physical issues. Among those are, for example, solving fractional Navier-Stokes equations [16] and
proposed an analytic solution of two-dimensional coupled differential Burger’s equation [17]. The
basic definitions of this transformation is defined as follows, the new transform of the function
f(t) is:

E[ft)]= vj:f (t)e%dtz T(v),vt>0. (3.1)

Theorem 3.1 [13]

Let T'(v) be the transform (3.1) of the derivative of f(t). Then,
n-1
(i)T’(v):m—v f(0)(ii )T ™(v) = l;’)— v i 0)n=1
v v k=0

where T ”(V) is the transform (3.1) of the nth derivative of the function f (t)

The transform (3.1) can certainly handle all problems that are ordinarily handled by the well-
recognized and extensively used Laplace transform. Indeed, as the next theorem shows the duality

between the transform (3.1) and Laplace transform F(s).

Theorem 3.2 [14], [15]

. |t]/;

Let f(t)e A= f(t)AM. k;. k, > 0|, such that | ()] <me™™,
ifte (—1)J X[O, oo)

Then with Laplace transform F(s) and the transform (3.1)T(v) of f(t), we obtain;

. T(v):vF[%j.
. F(s):sT(lj.

S

Theorem 3.3
If m—1<a<m, m eN,then the transform (3.1) of the fractional derivative D“ f(t) is,
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m-1
Epe t(t)=Te )= 1Y St w gyt
v k=0
where T (V) is the transform (3.1) of f (t).

Proof. Laplace transform of the fractional derivative is:

E[D“f(t)]:S“F(s)—zkm;;f(k)(O)s“‘k‘lt>O,and from Theorem 3.2, we have;

ot (t))= sTa(%j and E[D“ f (t)]= vF“[%j

Then:
el Srmof |

E[Da f (t)] = y_ ka:f (k) (O)VZ—a+k

4. Algorithm of the Method

The ADM is used to provide approximate answers for nonlinear problems in terms of
convergent series with easily computable components. In the current section we employ the NDM
to discuss about problems. To express the basic thought, let us study the following fractional
differential equation,

Deu(t) +a,u™ () +a,_u™ () +---+au’(t) +a.u(t)

#NU@®.U®)=F1), t>0,m-1<a<m, (4.1)

Subject to the initial conditions,

u”©)=b,,i=0,12,. (4.2)
where a, ,bi are known real constants, N is a nonlinear operator and f (t) is known function. The
equation (4.1) is transformed into the following system:

Deu(t) +a,u™ () +a,_u™ ™ (t)+---+au’(t) +a.u(t)

4.3
+N(u(t),u't))= ft)yt=0 43

Subject to the initial conditions,
u?”@©)=hb i=0,1,2,---,m-1. (4.4)

Taking the transform (3.1) of the equation (4.3), to obtain,

E[D“u(t)|+a,E[u™)|+a, Elu™? )]+ +aE[u(t)]+
a,E[u(t) ]+ E[N(u(t),u't))]= E[f (t)]

Applying the theorem 3.4, and applying the formula of the transform (3.1), we fix;

29



T. M. Elzaki, M. Chamekh

Via Efu)]= mz_lf O + E[f (t)]-a, E[u™ (t)]-a,,Eu™® 1))
~ -] 2, E®]- ENU®.u'®))

and,
E[u(t)]= Ef OV +vE[f (1)]-
Ve [am E[u (ﬁ‘“z)o(t)]+ amflE[u‘""l) (t)]+ -+ a,E[u'(t)]+a,E[u (t)]] (4.5)
—VEE[N(u(®), ')}

The new decomposition method represents the solution as an infinite series

i = Y, ). (4.6)
r=0
and the nonlinear term N (u (1), u’(t)) decomposes as;
N@U©.U'D)=3A 0. @7
r=0
where,
1 d ' - r - ry,
A= N[ZP 0, (), YP u,(t>) (4.8
r! dp R=0 R=0 p=0

are Adomian polynomials,

Substituting (4.6), (4.7) and (4.8), into (4.5), to get;
E{iu,(t)} = fu(")v2+k +VUE[f ()]~
r=0 k=0
v{amE{iufm) (t)} . amlE[iuﬁm“ (t)} ot aiE[iu; (t)} ; aOE{iur (t)ﬂ _
r=0 r=0 r=0 r=0
v“E@Ar (t)},
The iterations are defined by the recursive relations;

Elu,,(t)]= rnz_lu“’v2+k +VUE[f )]

Efu, 0]= ~v* o, Eu (0 ]+---+ & Elul, O]+ &, E[u, , )] (4.9)
VE[A (D] r=1,23,--

5. Numerical Results
In this section we illustrate some examples presented to explain the method.

Example 1.
In this example, a fractional Riccati equation is considered,

Deu(t) =1-u’(t),t>0,0< a <1. (5.1)
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We apply the proposed algorithm. Take the transform (3.1) of the equation (5.1), to get;
E[Du(t)]= EQJ-Efp?®)]= ia(t)]—u(O)vz’“ =v2—E[@m)]
Vv

Then E[u(t)]=u(OV? +v<2 —vE[u?(t)], or
E[iur(t)} = WO + v —v“E[iAr (t)}

The new decomposition series (4.9) has the form,

Elu, (t)] = c,v° +v*?

Elu®]=-vE[A.(®)] =12,
where:
A,(t):ld—l.[u2+2pu u, + p?(uZ +2u,u )+---] .
it dp’ 0 oh 1 042 p=0

Considering the initial conditions, then we can find,;

— \at2 _ t
Eu,(t)]= v = u,(t) = D
Elu,®]=-v E[Ug (t)]: u,(t) = - r? (l;c(iolt);l(;ta +1)

Elu, )]= —~v“E[2u, (t)u, (t)]
u(t) = 2 2a+1)I'(4a +1) 5 .
2 I(a+D)IBa+1)I (e +1)

If o =1 we obtain:

0 () = tu () = - andu, 1) = 24

0 Tt 3 ? 15
This results from the NDM when ¢ =1 match the exact solution
t* 2t°

u(t)=tanh(x) =t ——+—+---
(1) = tanh () =t-—+

Thus, the proposed method is a very effective and accurate method that can be utilized to
provide analytical results for nonlinear fractional differential equations.

Example 2.
Look at the following fractional nonlinear equation,

D“u(t) = 0.1-u(t) +0.8u*(t),t >0,0 < a <1, (5.2)
with the initial condition,
u(0) =0. (5.3)

Take the transform (3.1) of the equation (5.2) and use the initial conditions (5.3), and so we

suffer;
E[u(t)] = 0.3v** —v“E[u(t)] + 0.8vE[u’(t)
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According to the relation (4.9), we have the new decomposition series in the form,

Elu, (t)]=0.1v**?
Elu,(0)]=—~v“Elu . ()]+ 0.8v“E[A , (0] i1 =123,

where : At)= %(%,[u(f +2pUgU; + p* (U +2ugU,) + - ']p:o
Then we have, -
%m:réinﬁ’
L= O 0008TQa+l) o

F2a+1l)  T(a+1)Ba+1)

0 (1) = 01 20 1 [o.oosr(za +1) , 0.016I'(3cx +1)}t4,,
I'Ga+1) INa+1)I'(4a +1) I'a+1) I'Ra+1)

0.00128T" (2 +1)I (4 +1) s,

I (a +1)T'Ba +1)I (5a +1)

For this example, when a =1, that is easy to calculate the exact solution for this example, but
we obtain a solution with a complicate expression. We obtained a good agreement for only two-
steps of NDM.

Approximate solution for a=I

0.12 |
#* Exact solution
v,
01¢t
—u,
Uy
0.08
Lk
;.I--r-""'* * B _ |
ﬂiﬁ;%ifxw_
N feé’*?
.ﬂg@
0.02 | x./ o
*/
0 I I | | 1
0 0.2 04 0.6 0.8 1 1.2
t

Fig.1 Comparison of the approximation solution U, U, and U, with the exact solution for o =1
(Example 2.).
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Approximation error for a=I
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Fig. 2 Relative error of two step NDM when o =1 (Example 2.).
Different approximate solutions for some value of o
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Fig. 3 The different approximate solution for some value of & (Example 2.).

Figl. shows the comparison between the exact solution for ¢ =1 and some first approximation
solution U, of NDM, with U = zinzoui. In Fig. 2, the relative error of NDM is presented. The
different solutions according some values of « are presented the Fig.3.
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Example 3.
In this example a Van der Pol equation is considered with a fractional derivative,

Du(t) =1+u’'(t) —u(t) + u?(t)u’(t) t > Owhere0 < o < 2, (5.4)

with to the initial conditions,

u(0)=0,u’(0) =1. (5.5)

Take the transform (3.1) of equation (5.4), making use of the initial conditions (5.5). And
relation (4.9), we have the new decomposition method in the form,

E[u, (t)]= v +v2u(0) + v3u'(0) —v**u(0)
E[u, )] = v Elu,, )]~ v Elu_,®]vE[A,(©)) i =123,

where:
1d' , , )
Ai (t) = ﬁd—pi[uguo + p(2U0U0U1 + ugul) +- ']p=0
Then we have,

2 ta _ 1 ta+l _ 2 ta+2 + 1 t2a—l
I +1) ['a+2) ['(a+3) I'2a)
+ 1 t2e _ [a+2) | 1 n 2 20l
I'a+1) I'2a+2)| I'(a) T(x+1)

u() =t+

D.15 02 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 4 The different approximate solution for some value of & = 2,1.5,0.75 and 0.55 presented in
solid lines, adding an approximate solution calculated by RK4 for & = 2 in diamond markers (Example 3.).
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For ¢ =2, it is found in Fig. 4 that the outcome obtained by using the NDM with that held by
the fourth-order Runge-Kutta (RK4) method had accurate. In addition, we also note that solution
changes the concavity accordingto o <1l or o >1.

6. Conclusions

This study is to suggest an efficient algorithm for the solution of nonlinear fractional initial
value problems. The Adomian decomposition method has been recognized as a potent technique
for solving many nonlinear differential equations. In this work, a combined method that groups
together the transform (3.1) and Adomian decomposition are discussed to finding an explicit
approximate solution for nonlinear fractional initial value problems. We have noted the simplicity
and the performance of EADM particularly if o =1 where the approximate solution is compared
to the exact solution or the RK4 one. For a future project, we will interest to extend the NDM for
nonlinear fractional PDE of the higher order.
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