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Abstract 
The probability of an operational risk model, when given an initial reserve, is estimated by using an 
“innovative”modern method. The above problem is reduced to the solution of a non-linear Volterra 
partial integro-differential equation. Consequently, such a non-linear integro-differential equation 
is numerically evaluated by using Lagrange polynomials approximation solution. Also, the new 
model can be applied to the estimation of the risk for every risk business like hedge funds, bond 
loans, insurance companies, etc. Hence, risk analysis is a technique used to identify and assess 
factors that may jeopardize the success of a project or achieving a goal. This technique also helps to 
define preventive measures to reduce the probability of these factors from occurring and identify 
countermeasures to successfully deal with these constraints when they develop to avert possible 
negative effects on the competitiveness of the company. 
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1. Introduction 

Generally, risk analysis is the process of defining and analyzing the dangers to individuals, 
businesses and government agencies posed by potential natural and human-caused adverse events. 
Besides, a risk analysis report can be used to align technology-related objectives with a company's 
business objectives. So, a risk analysis report can be either quantitative or qualitative. In 
quantitative risk analysis, an attempt is made to numerically determine the probabilities of various 
adverse events and the likely extent of the losses if a particular event takes place. Qualitative risk 
analysis, which is used more often, does not involve numerical probabilities or predictions of loss. 
Instead, the qualitative method involves defining the various threats, determining the extent of 
vulnerabilities and devising countermeasures should an attack occur. 

Risk management analysis is the identification, assessment, and prioritization of risks followed 
by coordinated and economical application of resources to minimize, monitor, and control the 
probability and the impact of unfortunate eventsor to maximize the realization of opportunities. 
Beyond the above, risks can come from uncertainty in financial markets, threats from project 
failures (at any phase in design, development, production, or sustainment life-cycles), legal 
liabilities, credit risk, accidents, natural causes and disasters as well as deliberate attack from an 
adversary, or events of uncertain or unpredictable root-cause. 

On the contrary, the strategies to manage threats (uncertainties with negative consequences) 
typically include transferring the threat to another party, avoiding the threat, reducing the negative 
effect or probability of the threat, or even accepting some or all of the potential or actual 
consequences of a particular threat, and the opposites for opportunities (uncertain future states with 
benefits). 

Hence, risk analysis is the science of risks and their probability and evaluation. Furthermore, 
risk analysis should be performed as part of the risk management process for each project. The data 
of which would be based on risk discussion workshops to identify potential issues and risks ahead 
of time before these were to pose cost and schedule negative impacts. Consequently, the process of 
identifying risks, assessing risks and developing strategies to manage risks is known as risk
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management. A risk management plan and a business impact analysis are important parts of your 
business continuity plan. By understanding potential risks to your business and finding ways to 
minimize their impacts, you will help your business recover quickly if an incident occurs. 

Types of risk vary from business to business, but preparing a risk management plan involves a 
common process. The risk management plan should detail company’s strategy for dealing with 
risks specific to your business. It is important to allocate some time, budget and resources for 
preparing a risk management plan and a business impact analysis. This will help to meet the legal 
obligations for providing a safe workplace and can reduce the likelihood of an incident negatively 
impacting on the business. 

Besides, the goal of risk management is to measure and assess risk, with the ultimate goal of 
managing that risk. Risk management falls into the arena of Project Planning. Over time, specific 
standards and methods have been developed with respect to risk management. These methods of 
analysis help those that practice risk management to use established ways of identifying risk. It also 
helps them manage risk by either avoiding it, transferring it, reducing the impact of the risk, or by 
various other alternative solutions. Risk management requires to identify potential risks; risk being 
anything that can possibly harm or have a negative impact on the project. Risk managers generally 
approach the search for potential risk from two distinct angles: source analysis and problem 
analysis. So, source analysis seeks to look at the potential sources of risk whereas problem analysis 
looks at specific individual problems that could arise. 

Risk management analysis methods were proposed and investigated by several authors during 
the past years. [1]-[18] Such methods include Volterra Partial Integro-differential Equations models 
and several other integral equations methods. These methods include both analytical solutions for 
simpler cases of the integral equations, as well as computational methods for more complicated 
cases. Mostly the above numerical methods include polynomial approximations, which are usually 
the most suitable for the computational recipes of risk management analysis.   

On the other hand, E.G.Ladopoulos [19] - [30] used non-linear integral equations methods for 
the solution of problems of fluid mechanics, aerodynamics, structural analysis and petroleum 
engineering. The above non-linear methods will be extended by the current research to the solution 
of risk management analysis problems.  

Hence, a new method is presented for the estimation of the probability of an operational risk 
model, when given an initial reserve. Consequently, this problem is reduced to the solution of a 
non-linear Volterra partial integro-differential equation. The above non-linear integro-differential 
equation is further numerically evaluated by using Lagrange polynomials approximation solution. 
Then the new model can be applied to the estimation of the risk for every risk business like hedge 
funds, bond loans, insurance companies, etc. 

 

2. Risk Management by Non-linear Volterra Partial Integro-differential Equations  
Very important in modelling a risk business such as a hedge fund, or a bond loan is  the problem 

of estimating the probability when an initial reserve exists. Then the following probability should 
be determined: 

 
                                     zZtssZPtzR  )0(,0,0)(),(                                              (2.1) 

 
in which  Z(s) denotes the risk reserve at time s and z  is the initial risk reserve. 

   
Beyond the above, the model obtained for the risk management business of a hedge fund, bond 

loan, etc., assumes the following relation: 
 
            Risk Reserve = Initial Reserve + Total Premiums - Total Claims                         (2.2)        
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Claim sizes at time t which are denoted by  are assumed to have distribution function 

  with corresponding density function d(x) and are assumed to arrive according to 

a Poisson process  with parameter μ. 
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So, the accumulated claims process is a compound Poisson process: 

                                                                                                                             (2.4) 

 
 is also assumed that the premium is received at a continuous rate a(r) which depends on the 
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So, analytical solutions of the non-linear integro-differential equation (2.6) are not available and 

the

3. Computational Method by Lagrange Polynomials Approximation for Risk Management 

on 

(2.

refore the above equation has to be solved only by computational methods. 
 

In order to solve numerically the non-linear Volterra partial integro-differential equati

6)÷(2.7), let us rewrite the above non-linear integro-differential equation as following: 
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For the numerical evaluation of the non-linear Volterra partial integro-differential equation (3.1) 
÷(3

unknown function R(z,t) of the non-
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The boundary condition
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in which: 
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Furthermore, as  is given by (3.4), then from (3.10) follows: 
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esides, by replacing (3.9), (3.12) and (3.13) in (3.1) follows that the coefficients  in (3.9) 
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in which   are approximations to the following integrals by quadrature rules: 
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4. Conclusions 

model, when giv
ear Volterra partial integro-differential equation. Hence, the above non-linear integro-differential 

equation was numerically evaluated by using Lagrange polynomials approximation solution. So, 
the new model can be applied to the estimation of the risk for every risk business like hedge funds, 
bond loans, insurance companies, etc. 

Risk management analysis is very helpful in examining the risks and following a well planned 
process to hedge the risk. At the sam

tors related to the process are also discussed through this analysis. The business sector always 
faces some kind of risk. So, the risk management initiatives are becoming all the more important 
with the growing competition in the global market. In the highly competitive global market there is 
hardly any scope to afford any kind of loss. As a result of this, the concept of risk management has 
gained considerable importance over the passage of time. 

The risk management analysis is very important for proper application of the risk management 
policies. This analysis is necessary because the demand o

stantly and only proper analysis of risks can help the businesses to achieve the set targets. 
Beyond the above, the risk management process refers to the different types of methods and 

procedures that are utilized for risk management. The process of risk management involves a 
mber of steps and it helps in the betterment in decision-making on a continuous basis. Hence, 

Risk management is a function that incorporates identification of risk, evaluation of risk, 
formulation of schemes to handle risks and reduction or elimination of risk utilizing a number of 
methods. Risk management process is an important task for the managers of an organization. 

A risk management strategy delineates in what manner the risks are going to be handled. Risk 
management strategy acts as a major device for the higher management of a company because
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