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Abstract 
A new mathematical approach is proposed by using non-linear semigroups in order to prove the 
existence and uniqueness of solutions for the non-linear partial differential equation defined in L2 
and derived from the general porous medium analysis. Such an equation is used in well test 
analysis in petroleum reservoir engineering for the determination of the properties of the reservoir 
materials. Consequently, by the new method is estimated the size of the oil reserves after their 
exploration. In addition, the existence and uniqueness of solutions for the non-linear porous 
medium equation is proved, by presenting some general boundary conditions. Finally, some 
properties of the solutions for the above non-linear partial differential equation are finally proved.  
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1. Introduction 

During the past years an increasing interest was realized on studying non-linear semigroups in 
general Banach spaces associated with the existence and uniqueness theory of partial differential 
equations arising in a big level of problems of mathematical physics and engineering. So, the study 
of the non-linear semigroups was derived directly from the examination of non-linear parabolic 
equations and from various non-linear boundary value problems. 

As a beginning the first work on semigroups was published by A.V.Balakrishnan [1], when 
studying fractional powers of closed operators. Besides, some years later T.Kato [2] studied non-
linear semigroups in connection with evolution equations, while Y.Komura [3], [4] studied non-
linear semigroups defined in Hilbert spaces. 

On the contrary, K.Sato [5] investigated non-negative contraction semigroups in Banach spaces, 
while a general theory of non-linear semigroups was investigated by M.G. Crandall et al. [6] - [8]. 
Furthermore, J.Watanabe [9], [10] studied semigroups of non-linear operators on closed convex 
sets and H.Brezis et al. [11], [12] introduced a general semigroups formulation. 

At the same time, M.Iannelli [13] studied non-linear semigroups on cones of a non-reflexive 
Banach space, while J.Mermin [14] and S.Oharu [15] investigated general theories of non-linear 
semigroups. In addition, I.Miyadera [16] studied semigroups of non-linear operators and 
B.K.Quinn [17] investigated semigroups in L1 spaces. 

Besides, Y.Konishi [18] studied non-linear semigroups associated with some partial differential 
equations and U.Westphal [19] and S.Aizawa [20] investigated some formulations for non-linear 
semigroups. On the other hand, T.Kurtz [21] studied semigroups of non-linear operators applied to 
gas kinetics, while R.Bruck [22] investigated asymptotic convergence of non-linear contraction 
semigroups in Hilbert spaces. 

The theory of non-linear semigroups was generated by Y.Kobayashi [23], [24] and a monograph 
on the above subject was written by V. Barbu [25]. Also, J.M. Ball [26] studied strongly 
continuous semigroups, while B.C.Burch [27] investigated a semigroup treatment of the Hamilton - 
Jacobi equations in several space variables. 

At the same time, J.H.Lightbourne and R.H.Martin [28] investigated relatively continuous 
perturbations of analytic semigroups, when A.T.Plant [29] studied non-linear semigroups of 
translations in Banach spaces generated by functional differential equations. 
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The theory of non-linear semigroups on general Banach spaces was further investigated by 
J.B.Baillon [30] and A.Pazy [31], [32], while J.A.Goldstein [33] wrote a monograph on semigroups 
of linear operators with some general applications. Besides, a monograph on non-linear evolution 
operators and semigroups was written by N.H.Pavel [34].        

By the current investigation the non-linear semigroups are used in order to prove the existence 
and uniqueness of solutions for the non-linear partial differential equation defined in L2 spaces. 
This differential equation is derived from the general theory of porous medium analysis. The 
porous medium equation was recently used by E.G.Ladopoulos [35] - [37]  in well test analysis in 
the petroleum reservoir engineering for the determination of the properties of the reservoir 
materials. The above theory together with "Non-linear Real-time Expert Seismology" was used for 
the exploration of on-shore and off-shore oil and gas reserves, as an extension of the non-linear 
theories investigated by E.G.Ladopoulos et al. during the last two decades. [38] - [49].  

Beyond the above, by the current research the existence and uniqueness of solutions for the non-
linear porous medium equation is investigated, by using a method of non-linear semigroups. 
Finally, some properties of the solution for the above non-linear differential equation are proved. 
 
2. Non-linear Porous Medium Analysis 
 
Theorem 2.1 
Suppose that oil flows through a porous medium, that occupies the domain B, which is bounded in 
R3. Denote by  u=u(x,t)  the density of the oil and by  p=p(x,t) its pressure at the point 

 at time  t. (Fig.1) Bxxxx  ),,( 321

 

 
 

Fig. 1  A bounded domain  B in 3R  with small boundary Γ inside which flows a gas with density  u=u(x,t) 
and pressure p=p(x,t) at the point Bxxxx  ),,( 321  at time t. 

 
 
Then, the porous medium equation is equal to: 
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and  μ is equal to: 
                                                                )1(/0  apa                                                          (2.3) 
 
with  p0  a constant, ,1a 0  the viscosity of the medium, λ>0 its permeability and 

.  21 am
 
Proof 
We have: 

                                                                                                                                      (2.4) aupp 0
 
where  p0  denotes a constant and . 1a
 

Furthermore, if ),,( utvv   denotes the velocity of the oil, then Darcy's law gives:  
 
                                                                     p v                                                               (2.5) 
 
in which  ξ  denotes the viscosity and  λ  the permeability of the medium. 
 

Consequently, by combining eqs (2.4) and (2.5) one obtains: 
 

                                                                                                                              (2.6) aup0 v
 

In addition, the dynamic of gas is given by the following conservation law: 
 

                                                               0)( 



vu
t

u
f                                                         (2.7) 

 
where  f  denotes the porosity of the solid,  10  f . 
 

Moreover, it is well known that: 
 

                                                         12

1
)( 


 aa u

a

a
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So, by combining eqs (2.4), (2.5), (2.6), (2.7) and (2.8) we obtain the required formula  (2.1). 
 
3. Non-linear Semigroups used for the Existence and Uniqueness Theorems for Non-linear 
Partial Differential Equations in L2  
Definition 3.1 

Let F a nonempty subset of a Banach space B. Then, a semigroup on F is a function S on  such 

that   for each   with the following properties: 


0R

FFtS :)( 0t

                                                                      1)0( S                                                                    (3.1) 
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Theorem 3.1 
Consider by B  a bounded domain in R3, with smooth boundary Γ  and  u=u(x,t)  the temperature 
function at the point  Bxxxx  ),,( 321  at time t. (Fig.1) 
 
Then, the porous medium equation: 
 

                                                   mxtu
t

txu
),(

),( 2


      in  Bx ,[,0]                          (3.4) 

 
with the boundary conditions: 
 
                                                         u(t,x) = 0 ,           on    x,[,0]                                (3.5) 
 
                                                        ,)(),0( 0 xuxu  in  B                                                         (3.6) 
 
in which μ is given by (2.3),   and 2m )(20 BLu  ,  has a unique solution  

 ,........(;,0,,))()((),( 20  BLCutBxxutSxtu 2,1},) n[.0{] n

  
Proof                                         

As it is well known, the Laplace operator    is self-adjoint in . 2 )(2 BL

Consequently, for one has: )(, 2Dwu
                     

                                                                                                             (3.7)  
B

wdxuwu )(, 22

 
which is equal to: 

                                                                                                      (3.8)   
B B

dxwuwdxu ))((){ 2

 
and finally to: 
 

                                                                                    (3.9)    
B B

wuwdxudxwu 22 ,))((

 
So, from eqs (3.7), (3.8) and (3.9) we obtain: 
 

                                                                                                              (3.10)  wuwu 22 ,,
            

from which follows that   is symmetric and maximal monotone in   and thus and  
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Hence, the solution  has the property  for every n, 

with r = 0,1,2,…… and finally  
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,0{] Cu n
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,.........2,1,0,)}(;[ nBC n

 
Thus, as the solution   tends in to an equilibrium point, then finally 

follows that:   
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Theorem 3.2 
Consider the non-linear partial differential porous medium equation (3.4) with the boundary 
conditions (3.5) and (3.6). Then, the solution ))()((),( 0 xutSxtu   of the above problem, with  

, satisfies the following properties: )(20 BLu 
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and:                                   pBLuuutS pLL pp

1,)(,)( 000                              (3.12) 

 
Proof 
Consider the following function: 
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L
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  Then, one has: 

 

                                                                                                 (3.14) udxutututg
B
  2)(,)()(

from which follows: 
 

                                                              dxxtuudxu
B B
   22 ),(                                          (3.15) 

 
   Consequently, by integrating over  [ε, Τ]  with T 0   and letting  0 ,  then we obtain 

(3.11). 
 

  Beyond the above, by multiplying (3.4) by  ),(),(
2

xtuxtu
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 for the case m =1 and taking into 

account that: 
 

                                                             uupuu
pp   22

)1()(                                          (3.16)     

 
then, we have: 
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which finally is equal to: 
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from which follows the required  (3.12).      
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4. Conclusions 
A general porous medium analysis was presented, by considering an oil which flows through a 

porous medium which occupies a closed domain, bounded in 3R . Such  problem was reduced to 
the solution of a non-linear partial differential equation, under some general boundary conditions. 

Hence, the existence and uniqueness of solutions was proved, for the above non-linear porous 
medium equation defined in L2, by using a technique based on non-linear semigroups. This method 
has clearly simplified the proofs of the existence and uniqueness theorems and has clarified the 
simpleness to other methods of mathematical analysis. 

Finally, some properties for the solutions of the non-linear partial differential equations were 
proved, when these are defined in L2. These properties were further generalized in  spaces, by 

proving a corresponding inequality for the solution of the non-linear porous medium equation. 
pL
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