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Abstract

A modern technology is proposed by applying the Singular Integral Operators Method
(S.1.O.M.).for the determination of the properties of non-wood cellulosic fibers used for paper
manufacturing. Consequently, the solution of the anisotropic elastic stress analysis problem is
investigated, which defines the basic feature for the mechanical behavior of non-wood cellulosic
fibers. So, the above “groundbreaking” method depends on the existence and explicit definition of
the fundamental solution to the governing partial differential equations. Then, after the
determination of the fundamental solution, a real variable boundary integral formula is generated.
Beyond the above, the construction of the solution for the composite solids problem is presented as
is the derivation of the expression for the surface tractions necessary to maintain the fundamental
solution in a bounded region. Many parameters, like intensity factors, incorporate stress kernels,
geometry and crack size, may be evaluated by the elastic stress analysis of cracked structures.
Hence, by using the S.I.O.M., then the anisotropic elastic stress of composite solids will be
determined.
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1. Introduction

In general, pulp and paper production is one of the high demand sectors in the industrial world.
Currently world paper production is about 500 million tons. Cleaner technology is applied to
achieve increased production with minimum effect on the environment and to save, utilize, and
recycle expensive and scarce chemicals and raw materials. So, the increasing demand for paper has
raised the need for low-cost raw materials and also the developing of new process in order to boost
production.

Consequently, non-wood fibers, for example agricultural residues and annual plants, are
considered an effective alternative source of cellulose for producing pulp and paper sheets with
acceptable properties in lower cost. There is a growing interest in the use of non-wood such as
annual plants and agricultural residues as a raw material for pulp and paper. Hence, non-wood raw
materials account for less than 10% of the total pulp and paper production worldwide.

The benefits of non-wood plants as a fiber resource are their fast annual growth and the smaller
amount of lignin in them that bind their fibers together. Another benefit is that non-wood pulp can
be produced at low temperatures with lower chemical charges. As the world pulp production is
unlikely to increase dramatically in near future, there is a practical need for non-wood pulp to
supplement the use of conventional wood pulp. Furthermore, the specific physical and chemical
characteristics of non-wood fibers have an essential role in the technical aspects involved in paper
production.

Besides, the production of pulp from non-wood resources has many advantages such as easy
pulping capability, excellent fibers for the special types of paper and high-quality bleached pulp.
They can be used as an effective substitute for the forever decreasing forest wood resources. In
addition to their sustainable nature, other advantages of non-wood pulps are their easy pulping and
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bleaching capabilities. These allow the production of high-quality bleached pulp by a less polluting
process than hardwood pulps and reduced energy requirements.

Traditionally non-wood material is cooked with hybrid chemimechanical and alkali-based
chemicals. In chemical pulping, the raw materials are cooked with appropriate chemicals in an
aqueous solution at an elevated temperature and pressure. The objective is to degrade and dissolve
away the lignin and leave behind most of the cellulose and hemicelluloses in the form of intact
fibers. Thus, in practice, chemical pulping methods are successful in removing most of the lignin
and they also degrade and dissolve a certain amount of the cellulose and hemicelluloses.

One group of the most promising pulp processes is called the Organosolv processes. So, in
terms of production technologies, novel and improved processes are proposed. The Organosolv
methods are based on cooking with organic solvents such as alcohols or organic acids. Methanol
and ethanol are common alcohols used and the organic acids are normally formic acid and acetic
acid. High cooking temperatures and associated high pressures are needed when alcohols are used
in cooking. The Organosolv process has certain advantages. It makes possible the breaking up of
the lignocellulosic biomass to obtain cellulosic fibers for pulp and papermaking, high quality
hemicelluloses and lignin degradation products from generated black liquors, thus avoiding
emission and effluents. Hence, the Organosolv pulping process is an alternatives to conventional
pulping processes, and has environmental advantages. Organosolv pulping features an organic
solvent in the pulping liquor which limits the emission of volatile sulfur compounds into the
atmosphere and gives efficient chlorine-free bleaching. These processes should be capable of
pulping all lignocellulose species with equal efficiency. Another major advantage of the
Organosolv process is the formation of useful by-products such as furfural, lignin and
hemicelluloses.

By the current research plants like kenaf (Hibiscus cannabinus L.) and giant reed (Arundo
donax L.) are proposed as internodes gave very good derived values, especially slenderness ratio,
which is directly comparable to some softwood and most hardwood species. Chemical analysis of
the raw plant materials revealed satisfactory levels of a-cellulose content (close to 40%) and
Klason lignin content (<30%) compared to those of hardwoods and softwoods.

The above non-wood plants offer several advantages including short growth cycles, moderate
irrigation and fertilization requirements and low lignin content resulting to reduced energy and
chemicals use during pulping. The fiber dimensions are shown in Table 1. As a dicot, kenaf has
two distinct kinds of fibers—long bark fibers, which account for 35% of its fibrous part, and short
core fibers, which account for the rest. Bark fibers have very good derived values (especially
slenderness ratio) compared to those of some softwoods and certainly to most hardwoods. Hence,
papers made from kenaf bark fibers are expected to have increased mechanical strength and thus be
suitable for writing, printing, wrapping and packaging purposes.

Table 1

Non-wood Fiber Dimensions

Plant Material Length (mm) Diameter (um) Lumen Diameter(um) | Cell Wall Thick.(um)
Kenaf (bark) 2.32 21.9 11.9 4.2
Kenaf (core) 0.74 22.2 13.2 4.3
Kenaf (whole) 1.29 22.1 12.7 4.3
Reed (internodes) 1.22 17.3 8.5 4.4
Reed (nodes) 1.18 18.8 8.6 5.6

So, because of their lower lignin content (compared to wood), non-wood plants can be pulped in
one-third of the time needed for softwoods and hardwoods. Pulping of non-wood fibers also
demands around 30% less chemical charge, and reduced power consumption in pulp refining.
Many homogeneous solids like paper or pulp are often anisotropic (or at least orthotropic from
point to point).
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Over the past years, special effort has gone into studying stress fields in anisotropic solids,
because numerous engineering materials under normal or loading conditions show different
mechanical properties along certain preferred directions. Among them we shall mention the
following authors, following classical lines: S.G.Lekhnitskii [1]-[5], G.N.Savin [6]-[10],
M.O.Basheleishvili [11], [12], J.R.Willis [13], H.T.Rathod [14], S.Krenk [15], G.C.Sih and
H.Liebowitz [16], G.C.Sih and M.K.Kassir [17] and G.C.Sih et al. [18].

On the contrary, by using an integral transform method obtained by I.N.Sneddon [19], [20] the
governing partial differential equation of anisotropic elasticity is solved, while G.E.Tupholme [21],
D.D.Ang and M.L.Williams [22], O.L.Bowie and C.E.Freese [23] have studied some fracture
mechanics problems of orthotropic media.

Singular integral equation methods for solving two- and three-dimensional problems of cracks
and holes in anisotropic bodies have been introduced by F.J.Rizzo and D.J.Shippy [24], S.M.Vogel
and F.J.Rizzo [25], M.D.Snyder and T.A.Cruse [26], [27], E.G.Ladopoulos [28], [29], K.S.Parihar
and S.Sowdamini [30], T.Mura [31], C.Ouyang and Mei-Zi Lu [32], R.P.Gilbert et al. [33],
R.P.Gilbert and M.Schneider [34], R.P.Gilbert and R.Magnanini [35] and U.Zastrow [36] - [38].

Thus, the Singular Integral Operators Method (S.1.0.M.) [40]-[42] which was used very
successfully for the solution of several engineering problems of fluid mechanics, hydraulics,
aerodynamics, solid mechanics, potential flows and structural analysis, is further extended by the
present investigation for the solution of problems of non-wood cellulosic fibers for paper
manufacturing.

2. General Aspects of Anisotropic Elastic Stress Analysis

Let us express the stresses (O'X,O'y,O'Z,TyZ,TZX,Txy) in terms of strains

(£158,5€.57 257 x> 7y) through a set of constants Cy, which are called the moduli of elasticity:

O, _Cu Ch, C; Cy Cg Clé_ €y

o, Cy Cy Cp Gy Gy Cy €,

o.| |Gy Cyn Gy Gy G Gy ¢,
= x 2.1

Ty Cy Cp Cp Cuy Cp Cy Vyz
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On the other hand, in order to express the strains in terms of stresses, let us use another set of 36
constants a; (i,j = 1,2,...,6), known as the coefficients of deformation:

x ay ap 43 4y A5 dig Oy
y dy Ay Ay dyy dys dy oy
a a a a a a o
z 31 Q3 Qy3 d3y d3s dyg z
= X (2.2)
V2 Ay Qg dyz Ay dys Ay Tyz
Vox sy Ads; As3 A5y dss Qs Tox
17w | 9% de2 Qe des des Ags | | Tay |

So, by considering the case where the material is "transversely isotropic", which means, that it
possesses an axis of elastic symmetry such that the material is isotropic in the planes normal to this
axis, then the following formula is valid between the stresses and strains:
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. a, a, a; 0 0 0 o,
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— 13 13 33 « (23)
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where z is the direction of the elastic symmetry.
The coefficients of deformation in (2.3) are expressed as: [1]
a a, =——L
11 El s 12 El >
1 v,
Ay =—, Q3 =——, 24
33 E2 13 E2 ( )
1 2(1+v)) 1
ay=—, 2a,—-ap,)=——"=—
44 G2 ( 11 12) El Gl

in which E|, G, and v, are the Young's modulus, shear modulus, and Poisson's ratio, respectively,
in the plane of isotropy and E,, G, and v, are the same quantities in the transverse direction.

Also, in order to express the stress components in terms of strains for a "transversely isotropic"
material we obtain the following formula:

&
=lo 0 0 C, 0 x (2.5)

0 0 0 0 Cyu
1
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0
0

in which the elastic moduli C; may be expressed as following: [1],[2]

E E
C,, =2G,|1-v; | /| 1-v, —2v; —L
E2 E2
E E
Cp, =2G, | v, +vi=1|/[1-v, —2vi L
E2 E2
E
C,.=Eyv 1—v, =2y L
13 1 2/( 1 2 EzJ

(2.6)
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E
Cy, =E2(1—v1)/(1—v1 —2v; IJ
E2

C44 = Gz

1
E(Cn _C12)=G1

Beyond the above, in the case of isotropic material, vi=v,, E; = FE, and G;= G, and so the
elastic moduli Cj; may be related to the Lamé coefficients 1 and u as:
Ci=Cph=4+2pu

Cp,=C5y=4 2.7
Cu=u

The strain components in (2.5) are expressed by the formulas:

Su, Su, Su,
gx = , gy = . gz =
9x Sy 3z
Su, Suy
Vyr =
Y 9z
(2.8)
Su, Su,
7/ZX = - +
3z Sx
Sux Suy
j/xy = t—
9y  Sx

where u,, u, and u. are the components of displacements in Cartesian coordinates.

3. Fundamental Solutions of Composite Stress Analysis

We consider a body in three-dimensional space, which has a bounding surface L. According to
Betti's reciprocal theorem and by considering absence of body forces, we obtain: [24],[29]

~1,U,)dR=0 3.1)

ilij

a1, -1u)dr+ [WiT,
L r

where dR is an element of surface area at R, which is a point on L. Also I is the boundary of
the finite or infinite domain of space in coordinates xj, x, x3, in which exist the anisotropic elastic
body. This boundary I” is a connected closed Lyapounov surface.

In (3.1) u; and ¢ are the displacement and traction components, U;(x,y) the displacement at
point x in response to a concentrated unit body force acting in the j coordinate direction at point
v, and T} the suitable boundary tractions.

Moreover, Betti's theorem (eq. (3.1)) results in Somigliana's identity [24]:
1
w0 = Jl, @0, ()=, 7 e )] 4R (32)
L
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in which the point dependence is explicitly indicated and a is the magnitude of the force
components.

The following two limiting formulas have to exist:

lliré u, T, dR=au,(y) 3.3)
lim | £,U; dR=0 G4

where ¢ is the radius of a sphere centre y, with the boundary 7, and wui(y) the displacement at
the origin corresponding to #; and ¢ on L.

In order to derive the formula of the fundamental solution, we adopt the method of
decomposition into plane waves used in [39]. Hence, consider the function g, which is an arbitrary
distribution and vanishes outside a finite sphere.

The next formula is a solution of the differential equation:

Au(y)=g() (3.5)

u(y) =jg(x>{—mjdx (3.6)

in which 4y denotes the Laplacean with respect to y;.

The following identity is easily seen to be:

[l =y)¢ i d R=27x =] 3.7)
l¢l=1
From (3.5) and (3.7) we obtain the result:
Ay|x—y|=i (3.7a)
x5
Hence, from (3.5), (3.6) and (3.7a) one has:
I o
g0 =—=4[ [eltx,-y)¢ [dRdx (3.3)
167 e
Moreover, consider the function A#({p) which is given by the formula:
¢, p)= [e)dR (3.9)

(x&)=p

Also, the following formula is valid:
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[ eits —vo¢|ardx= [aR[lplap [etods

Al I I O
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G
and:
Ay_zlplh(é,pw-{)dp (3.11)

© ¢
=Ay[ j(p—y-;)h@,p)]dp— [(p=y- M. pYdp=2h(,y-¢)

<)

From (3.8), (3.10) and (3.11) we have:

1
g =-—54, [h¢.y-¢)dR (3.12)
87 EE
By considering the case where:
gy)=9o(y) (3.13)
then we obtain:
We,y-¢)=06(y-<) (3.14)
From (3.12), (3.13) and (3.14) we have the expression for the three-dimensional delta function:
1
S(x=y)==—74, [8(x=y)-{)dR (3.15)
8

[¢l=1

So, from (3.15) we derive the fundamental solution for the displacements:

U, (xy)=— A, [, 0.0)dR (3.16)
ks

87’ 71
where the function W) is given by:

VVi'(x:yaé/)a (x_J’)é/ >0

VVz'j(xayag) :{ ’

0. (x—y)-£<0 3.17)

According to the Cauchy-Kowalewski theorem we have:
Wy =B () x, —yi)Es (3.18)
Hence, from (3.16), (3.17) and (3.18) one obtains:

1
U,(x,y)=—5A, .[P,j(g’)cosgodR (3.19)
87 B
(x=»)-¢>0

By using (3.7), then (3.19) takes the simpler form:



E.G. Ladopoulos

1
Uy(x,y)=—s— jp,.j (&)cospd R (3.20)
471' |x - y| ‘é":l
(x=)-¢>0

in which ¢ is the angle between the vectors x-y and (.

From (3.20) we derive a simpler form, if the part of the integration over the unit hemispherical
shell of (3.20) involving the azimuthal angle, is carried out:

1
Uy ) =—5——  [B({)ds (3.21)
8”|x_y|\ﬂﬂ
(x=y)¢>0

where ds is an element of arc length.
Hence, (3.21) gives the solution for the general case of three-dimensional elasticity.

Furthermore, P;({) in (3.21) is given by:
_ 1/2 gimn gjrs er (é/)Qm (é/)
F(6)= det O

(3.22)

and:
Oy &)= Cg/klé,jé’l
where the constants Cjy, are the elasticities, Oy is the characteristic matrix and the quantities &;,,

and detQ are the alternating symbol and determinant of O, respectively. On the contrary, the
suitable boundary tractions 7}, are given by the formula:

Tim (X, y) = Cg’/’kl Ukm ()C, y),l n‘]' (3223)

in which »n; are the components of the unit outward at the point x on L. Furthermore, let us take
anew point x' relative to the point x. Then for the vectors x, x' we have:

x' = x+ 5 (3.23)

By the same way, the new point {; relative to the point ( is valid as:

¢ =C+& (3.24)
So, from (3.22a) we obtain in an analogous way, the displacement tensor:
1
Uy (') =——— $5(¢Nds (3.25)
8 ‘x —y‘w |

Consequently, from (3.23) and (3.24), eq. (3.25) takes the form:

1
U,(x",y)=————— $P,({+5)ds 3.26
v () 87r2|x+é‘x—J’| jﬂj(g > (320

Beyond the above, we introduce the expressions:

A =T (3.27)
and: |x y|

1
XY X 0K =y

1 _ = 3.28
! |x1—y| |x+5x—y| ( )
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So, it is easy to show that:
1
_ —AG

= (A +4,) (3.29)
1+ A, A,

l

3¢,

The insertion of (3.27), (3.28) and (3.29) into (3.26) results the displacements:

(X =) 1
Uy == PR (O ds———— [ (3.30)
87 |x—y| |¢]=1 87 |X_J’| |¢]=1
X l(xq Y4 )R""‘q *x, _y’)RJ"'" + 0 — s )Rﬂs +(x, ~y, )Rjit st + 1 3 IPiigk
detQ 872_2|x_y| ‘4‘21-
y [(xl _yl)Wl +(xm _ym)Wm +(xn _yn)Wn +(xp _yp)Wp +(X’, _yr)Wr +(XS _ys)WstS

detQ

Thus, (3.30) gives the solution for the general case of three-dimensional elasticity, while the
boundary tractions P; are given by (3.22).

4. Conclusions

By the current research non-wood cellulosic materials have been proposed for pulp production.
The increasing demands for paper and environmental concerns have increased the need for non-
wood pulp as a low-cost raw material for papermaking. This has also led to the developing of
alternative pulping technologies that are environmentally benign. Annual plants and agricultural
residues appear to be well suited for papermaking due to them being an abundant and renewable.

Moreover by the present investigation plants like kenaf (Hibiscus cannabinus L.) and giant reed
(Arundo donax L.) are proposed as internodes gave very good derived values, especially
slenderness ratio, which is directly comparable to some softwood and most hardwood species.
Besides, chemical analysis of the raw plant materials revealed satisfactory levels of a-cellulose
content (close to 40%) and Klason lignin content (<30%) compared to those of hardwoods and
softwoods.

In addition, a mathematical model has been presented as an attempt to determine the properties
non-wood cellulosic fibers. The above mentioned problem was reduced to the solution of a singular
integral equation, which was numerically solved by using the Singular Integral Operators Method.

Such singular integral equation method will be of increasing interest in future, as these methods
are very important for the solution of generalized solid mechanics and fluid mechanics problems.
Modern problems of fluid and solid mechanics are much more simplified when solved by general
singular integral equation methods.
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