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Abstract 
A modern numerical evaluation method is proposed for the approximation of the non-linear 
singular integro-differential equations defined in Banach spaces. Thus, the collocation numerical 
evaluation method is applied for the approximation of such type of non-linear equations, by using a 
system of Chebyshev functions. Additionally, through the application of the collocation numerical 
method is investigated the existence of solutions for the system of non-linear equations used for the 
approximation of the non-linear singular integro-differential equations, which are defined in a 
complete normed space, i.e. a Banach space. 
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1. Introduction 
Several problems of engineering mechanics, like structural analysis, fluid mechanics and 

aerodynamics, are reduced to the solution of non-linear singular integral and integro-differential 
equations. Consequently, there is an increasing interest for the solution of such type of non-linear 
integral equations, since these are connected with a wide range of problems of an applied character. 
The theory of non-linear singular integral and integro-differential equations seems to be 
particularly complicated if closely linked with applied mechanics problems. 

Having in mind the implications for different problems of engineering mechanics, 
E.G.Ladopoulos [1]-[9] and E.G.Ladopoulos and V.A.Zisis [10]-[12] introduced and investigated 
non-linear singular integral equations and non-linear finite-part singular integral equations. This 
type of non-linear equations has been applied to many problems of structural analysis, fluid 
mechanics and aerodynamics.  

On the contrary, some studies have been published, investigating non-linear integral equations 
of simpler form, without any singularities. Among the authors who studied non-linear theories used 
in applied mechanics, we shall mention the following: J.Andrews and J.M.Ball [13], S.S.Antman 
[14], [15], S.S.Antman and E.R.Carbone [16], J.M.Ball [17] - [19], H.Brezis [20], P.G.Ciarlet and 
P.Destuynder [21], P.G.Ciarlet and J.Necas [22], [23], J.E.Dendy [24], Guo Zhong-Heng [25], 
H.Hattori [26], D.Hoff and J.Smoller [27], W.J.Hrusa [28], R.C.MacCamy [29] - [31], B.Neta [32], 
[33], R.W.Ogden [34], R.L.Pego [35], M.Slemrod [36], and O.J.Staffans [37]. 

By the present investigation a new approximation method is proposed, for the numerical 
evaluation of the non-linear singular integro-differential equations defined in Banach spaces. 
Hence, a new form of the collocation approximation method is investigated for the numerical 
solution of the non-linear singular integro-differential equations, by studying the existence and 
uniqueness for their solution. For the numerical solution of the non-linear singular integro-
differential equations which are defined in the Banach spaces, is used a system of Chebyshev 
functions continuous on   . Consequently, through application of the collocation method the 

existence of solutions for the system of non-linear equations used for the approximation of the non-
linear singular integro-differential equations is investigated. 

  ,
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2. Non-linear Singular Integrodifferential Equations Existence Theorems  
 
Definition 2.1 
Consider the non-linear singular integro-differential equation: 

                               )(),(),(,, tutuStutF                                                  (2.1) 
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where  u(x)  is the unknown function,  g(t)  a known function,  (   ) t   and  
 ),(),(,, tuStutF    is the non-linear kernel. 
 
 
Definition 2.2 

Let    denote the set of functions u(t) satisfying a Lipschitz condition on the 

interval ,  which satisfy equation  
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exist. 

By introducing the norm  )()(max)( tutptu    into    0
1 ,, tC p  ,  it becomes a complete 

normed space, and thus a Banach space. 
 
 
Theorem 2.1 
Consider the nonlinear singular integro-differential equation (2.1). Additionally, concerning  
 vutF ,,,    we assume that the function   ),(),(,,)( tuStutFtp    is continuous on    ,   for  

,  has continuous partial derivatives with respect to  u  and  v  with the other 

arguments fixed, and satisfies the inequalities: 

  0,, t 1)( Ctu p 
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in the region    ),0(,,  rtrvur  ,  where  ),,(1 xf    and  ),,(2 xf    are 

nondecreasing functions of     and  x . 

Consider further that  qrf ),(   with   rq 0,10 .  Then, for any initial function  

 ru t U u t u tr0 ( ) ( ): ( ) 
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,  the sequence: 

 ntuSt nnu                                               (2.6)                                          

converges to the unique solution    0
1

* ,,)( tCtu p    of the non-linear singular integro-

differential equation (2.1). 
 
Proof. We replace  ),( tf    by two terms as follows: 

                                       ),,(),,(),( 21 ttfttftf                                                   (2.7) 

and consider the following equation: 

                                                                                                                     (2.8) rhrrf  )(),( 2 

in which: 
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Besides, the operator  ,...2,1,0),,,(1 ntuS n   in (2.6) shall be of the form: 
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and    is a given function. Hence, on the basis of the study in [10] the theorem can be proved. )(0 tu
 
If  qrf ),( 0 ,  where    is a root of (2.8), then for any initial approximation  ,  

the sequence (2.6) converges to the unique solution  

0r 0
in)(0 rUtu

  0
1

* ,,)( tCtu p     of  (2.1). Moreover: 
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on   , , where: 
 
                                 )()(),(),(,,)(max)()( 000   ttutuItutFtptat . 

 
3. Non-linear Singular Integro-differential Equations by Collocation Approximation Methods  

 
Theorem 3.1 
Consider the non-linear singular integro-differential equation (2.1). Suppose that the function  
 vutF ,,,    has continuous partial derivatives with respect to  u  and  v,  which for    on  0)( tp

  ,   satisfies (2.5) in the square   rrvu ,,    and suppose that  1),(  qrf    with  ), r(f    
given by (2.7). 

 
Besides, consider the system of non-linear equations: 
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in which   )(xk    is a given system of Chebyshev functions which are continuous on    ,

)

.  

Then the system of non-linear equations (3.1) has a solution    in  (* tum

   rrtutuU r 0,)(:)(   which approaches the unique solution    of (2.1) as  )(* tu m . 

 
Proof. According to (3.1) consider the equation: 
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and  ij   is the Kronecker delta. 

 
Furthermore, consider the existence of a solution of (3.3). Consequently, we use an interpolation 

process of the form (2.6), which in connection with this equation, may be written as: 
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where  ),(),,(,1,1 221121 tt   . 
 
Then, as  utatu )()(    and  utbtuI )(),(  ,  where  a(t)  and  b(t)  are determined by the 

given function  p(t)  and because (2.5) is true, (3.7) is true, too. 
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in which    are determined numbers. In the same way    will be a solution of (3.1), for  *
mka
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Besides, it is possible to put ),...,2,1(),()( mkttF kk  . We use further the Feier interpolation 
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Chebyshev nodes, i.e., the  k   are the zeros of the polynomial of degree  m  which differs at least 

from zero in the uniform metric space on    , : 
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and  1m   for this. 
 

We will further show that, as  m ,  the approximate solutions    converge in the form 

of    to a solution of (2.1). 
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is valid, where   mm and . 
 

Additionally, under the conditions that  ru    and  ru * ,  we can take  ω  to be  2r  and, 

therefore, follows that  mm rfr   ),(2 ,  i.e., these numbers are bounded for all  m. 
 
Because of the convergence of the Feier interpolation process [38] in the class of continuous 

functions, for any fixed function    and the remainder    approach zero on  ),(),( * turtu m ),,( * tuurm
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Because of the continuity of    on  ),,( *uutH   , : 
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is valid and in this  ε  can be arbitrarily small for small values of  δ1. 
 

Moreover, if  ,  then by taking into account the explicit form of  )(uSk II )(tk   and the 
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in which  M  is the largest value of    in the set  H t u u( , , )*    Uut  ,, . 
 

Besides, the inequalities (3.24) and (3.25) are valid for all    t   and  .  Thus,  
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As    is the unique solution of (2.1) in  ,  follows that this equation does not have any 

solutions in the ring  

)(* tu rU

  *uu ,  for   0 ,  i.e. there exists an  0),( a   such  that  
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In this ring therefore for any: 

),,(),,(),,(),,(),( 11 tuStuStuSutuSutu mm    is valid, and for sufficiently large  

),(),,(),,(, 1  artuStuSm mm    and hence  0),(),,(  mm ratuSu    for 

large  m.  Thus, follows that the   of (3.3)  cannot be in the ring  )(* tum   *uu   and, 

therefore   ** uum ,  where  ε  is positive and arbitrary, which finally proves  Theorem 3.1. 

 
4. Conclusions 

 
The present investigation  was devoted to a study of new approximation methods for the solution 

of the non-linear singular integro-differential equations, defined in closed-normed spaces, i.e. 
Banach spaces. This was an exposition of the conditions of applicability of the method of 
collocation to those non-linear equations and for the convergence of the method. 

 
Beyond the above, a system of Chebyshev functions was used in the collocation approximation 

method for the investigation of the existence of solutions for the system of non-linear equations 
applied for the numerical solution of the non-linear singular integro-differential equations. Closed-
form solutions of such type of non-linear equations are not possible to be determined, because of 
the big complication of their term. Hence, they are approximated only by special numerical 
methods. 

 
So, the collocation approximation methods can be used for the numerical evaluation of non-

linear singular integro-differential equations defined in general problems of structural analysis, 
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fracture mechanics, fluid mechanics, potential flows, aerodynamics, turbomachines, etc. of great 
importance. 
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