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Abstract

A modern numerical evaluation method is proposed for the approximation of the non-linear
singular integro-differential equations defined in Banach spaces. Thus, the collocation numerical
evaluation method is applied for the approximation of such type of non-linear equations, by using a
system of Chebyshev functions. Additionally, through the application of the collocation numerical
method is investigated the existence of solutions for the system of non-linear equations used for the
approximation of the non-linear singular integro-differential equations, which are defined in a
complete normed space, i.e. a Banach space.
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1. Introduction

Several problems of engineering mechanics, like structural analysis, fluid mechanics and
aerodynamics, are reduced to the solution of non-linear singular integral and integro-differential
equations. Consequently, there is an increasing interest for the solution of such type of non-linear
integral equations, since these are connected with a wide range of problems of an applied character.
The theory of non-linear singular integral and integro-differential equations seems to be
particularly complicated if closely linked with applied mechanics problems.

Having in mind the implications for different problems of engineering mechanics,
E.G.Ladopoulos [1]-[9] and E.G.Ladopoulos and V.A.Zisis [10]-[12] introduced and investigated
non-linear singular integral equations and non-linear finite-part singular integral equations. This
type of non-linear equations has been applied to many problems of structural analysis, fluid
mechanics and aerodynamics.

On the contrary, some studies have been published, investigating non-linear integral equations
of simpler form, without any singularities. Among the authors who studied non-linear theories used
in applied mechanics, we shall mention the following: J.Andrews and J.M.Ball [13], S.S.Antman
[14], [15], S.S.Antman and E.R.Carbone [16], J.M.Ball [17] - [19], H.Brezis [20], P.G.Ciarlet and
P.Destuynder [21], P.G.Ciarlet and J.Necas [22], [23], J.E.Dendy [24], Guo Zhong-Heng [25],
H.Hattori [26], D.Hoff and J.Smoller [27], W.J.Hrusa [28], R.C.MacCamy [29] - [31], B.Neta [32],
[33], R-W.Ogden [34], R.L.Pego [35], M.Slemrod [36], and O.J.Staffans [37].

By the present investigation a new approximation method is proposed, for the numerical
evaluation of the non-linear singular integro-differential equations defined in Banach spaces.
Hence, a new form of the collocation approximation method is investigated for the numerical
solution of the non-linear singular integro-differential equations, by studying the existence and
uniqueness for their solution. For the numerical solution of the non-linear singular integro-
differential equations which are defined in the Banach spaces, is used a system of Chebyshev
functions continuous on [-7,7|. Consequently, through application of the collocation method the

existence of solutions for the system of non-linear equations used for the approximation of the non-
linear singular integro-differential equations is investigated.
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2. Non-linear Singular Integrodifferential Equations Existence Theorems

Definition 2.1
Consider the non-linear singular integro-differential equation:

FlA,t,u(t), S(u,0)|=u'(2) 2.1)

with:

S(u,t) =Lg(t)]£Lx)dx 2.2)
27 i tan{ (x— t)}
2

where  u(x) is the unknown function, g(f) a known function, (-z<t<7z) and
F [/1, tu(t),S(u, t)] is the non-linear kernel.

Definition 2.2

Let C; ([— 7, ﬁ],lo) denote the set of functions u(f) satisfying a Lipschitz condition on the

interval [-7,7], which satisfy equation u(z,)=0 and for which the period p(H)u'(r) is
continuous on the above interval, where p(?) is some nonnegative function defined on [— 7, 7[]
such that the integrals:

t

a(t)=|[ (1 p(&))d ¢ (23)

fy

and:

b(t) = - j% 0 lncos;t/sin;(é—t) de (2.4)

ﬂ-_

exist.
By introducing the norm ||u(t)|| = max| p(t)u’(t)| into C;, ([— 7[,7[], ty ) , it becomes a complete

normed space, and thus a Banach space.

Theorem 2.1
Consider the nonlinear singular integro-differential equation (2.1). Additionally, concerning
F [ﬂ,t,u,v] we assume that the function p(t)F [ﬂ,t,u(t),S (u,t)] 1S continuous on [— T, 7[] for

u(t) e C;, (-7, 7] t,), has continuous partial derivatives with respect to u and v with the other

arguments fixed, and satisfies the inequalities:
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pOa@)|F, [2,t,a(t)&, b(0)x] < f;(2,|2],|+])
2.5)
PObO|F,[A.t,a)&,b(0)x] < £, (2. |].|x)
in the region {— r<u,v<r,—rm<t< 7[}(0, r <o), where f(4,|&, x|) and f,(4,|&], x|) are

nondecreasing functions of |§| and |x| .
Consider further that f(4,7)<qg with 0<g<1,0<r<oo. Then, for any initial function
uy(t) €U, = {u(t): ()] < r} , the sequence:

u,, ()=8,(Au,.1) (n=012,..) (2.6)

converges to the unique solution u*(t)eC; (-7,7}t,) of the non-linear singular integro-

differential equation (2.1).

Proof. We replace f(A,t) by two terms as follows:

f4,0)=fi(4,t,0)+ f,(4,t,1) 2.7

and consider the following equation:

fA,r)r+h*(A)=r (2.8)
in which:

h*(A) = max |p(1)F(4,1,0,0)|
—n<t<rw
Besides, the operator S,(4,u,,t),n=0,1,2,... in (2.6) shall be of the form:

S(hu,0) = [ FlA. & u(@). 1w, 6)]d & 2.9)

and u,(¢) is a given function. Hence, on the basis of the study in [10] the theorem can be proved.

If f(4,r,)<q, where r, is aroot of (2.8), then for any initial approximation u,(¢)inU, ,

the sequence (2.6) converges to the unique solution u.(¢) e C 11, ([72',—72'], to) of (2.1). Moreover:

14



E.G. Ladopoulos

u, (1) —u (2)| <9 s (2.10)
I-g

on [— T, 72'], where:

S(t) = a(ty max| p(O{F[A, 1,10 (1), 1wy, )|~ uy O (- <1 < 7).
3. Non-linear Singular Integro-differential Equations by Collocation Approximation Methods

Theorem 3.1
Consider the non-linear singular integro-differential equation (2.1). Suppose that the function
F [/1, t,u,v] has continuous partial derivatives with respect to # and v, which for p(#)>0 on

[z, 7] satisfies (2.5) in the square u,ve[-r,r] and suppose that f(A,r)<q<1 with f(4,7)
given by (2.7).

Besides, consider the system of non-linear equations:
H(vm’gi)zo (izlazr-':m) (31)

where  H(v, &)=V (&)= F[A,&,v, () 1(v,, )] & =& are fixed distinct points in
[—7r, 72'] with:

t

zm @i (x)
V = d . = 1,2,... 3'2
m (t) e amk J. p(X) X, m ( )

0}
in which {¢k (x)} is a given system of Chebyshev functions which are continuous on [— , 7r].

Then the system of non-linear equations (3.1) has a solution ufn(t) in

U, = {u(t) :||u(t)|| < r}, 0<r <o which approaches the unique solution u (f) of (2.1)as m — .

Proof. According to (3.1) consider the equation:
H,(u,,t)=0 (3.3)

in which H,, (u,,,t) is a function of the form:

H., (1) = (s, (0= 2w (O P(E)FIA & (6.1 o)

P (3.4
u,(=0,y,(&)= 61'1
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and 517 is the Kronecker delta.

Furthermore, consider the existence of a solution of (3.3). Consequently, we use an interpolation
process of the form (2.6), which in connection with this equation, may be written as:

u™ =8, (A4u",t) (n=0,2,..) (3.5)

m

where:

p(é VA& (&) 1w E)] (3.6)

S, (), t)=2jw (0-<

and ufno) (¢) 1is a given initial function.

It can be therefore shown that, under the same assumptions under which we proved Theorem
2.1, for any two functions u,(¢#) and u,(¢#) belonging to the ball U, = {u(t) :||u(t)|| < r}, the

following inequality norm of C', ([~ 7, 7}¢,) is fulfilled:

IS, (Aout1,0) = S, (Ayuy 1) < A, £ Ay () = 1, (2) (3.7)
in which:
ﬂmzsupih//i ,—w<t<nm (3.8)
p
and:
FA,t,u,(2), ](uz,t)] FA,t,u,(0),1(u,,0)]
( (t) = u, (1) jF [0, (00, 1y, 0)]A E + (3.9)
+E[I(u2,t) —I(ul,t)]:[Fv [4.tu, ()., (,0)]d &
with:

W(E.1) =%(1 + Euy (1) +§(l — &, (1) (3.102)

16



E.G. Ladopoulos

va(E.1) =%(H§)S(u2,t>+%(l—§>swl,o (3.10b)

As the derivatives F, [i,t,x,] (uz,t)] and F, [ﬂu,t,u1 (t),x] are continuous in x, then (3.9) can
be written as:

FlAtuy (0,1 (uy,0)]= FA,t,u,(6), 1(u,1)]
= F,[A,,v, (&, 0), 1y, 0) Ju, () = u, ()] 3.1

+ F, [ t,u, (0),v, (& O (uy 1) = T (uy,0)]

where —1<¢,,&, <L,& =¢&,(4,0,5, =&,(4,1).

Then, as |u(t)|<a(®)|u| and |I(u,0)| <b(r)|u|, where a(r) and b(f) are determined by the
given function p(f) and because (2.5) is true, (3.7) is true, too.

Additionally, if A, <1, then the operator (3.6), acting from C; ([— 72',72'], to) into the same

space, is a contraction operator, and therefore (3.3) will have a unique solution u:, (¢) 1in the ball
U,, to which the sequence {u,(n") (t)} will converge as n—>o for any initial function
u®@eU, .

By using the same method as for ,(¢), we are taking a linear combination of the functions

{F i (t)}(k =1,2,...,m) and, so (3.3) and its solution u :; () can be written as following:

H,,(u,.t)=pOu, ()= .y, {)=0 (3.12)
k=1
and:
“0=Sa [ 24 3.13
1, (1) kZa 0 (3.13)

1

)
in which a;k are determined numbers. In the same way u; (¢) will be a solution of (3.1), for
p(&)=0(=12,..,m).

Besides, it is possible to put F, (1) =y, (¢),(k =1,2,...,m) . We use further the Feier interpolation
process @, (&)(m=12,.) on the interval [— T, 72'] defined for a given function f() by
0,E)=F(EN0.(EN)=0,(k=12,.m), where & =&, =mcos((2k—1)/2m)r are the

17



E.G. Ladopoulos

Chebyshev nodes, i.e., the &, are the zeros of the polynomial of degree m which differs at least

from zero in the uniform metric space on [— 7, 72']1

m

T
2}'}1*1

T,(&)= COS(?Z' cos™ (5/7:)) (3.14)

Moreover, the interpolation polynomial @, (£) has the following form:

0,(&) =2 Wi (O (&) (3.15)
k=1
in which:
21, |,
= —F" - 3.16
Vi) {mﬂm@_g)} (=2 -22.) (3.16)

and A, =1 for this.

We will further show that, as m — oo, the approximate solutions u ; () converge in the form

of C; ([— T, ﬁ],to) to a solution of (2.1).

For this, we introduce the notation:

r, =sup||Sy(4,u,0) = S, (A,u,1)

,u—uWSw (3.17)

or:

b

7, :supmax|rm(u,t) u—u*HSa),—ertSﬂ (3.18)

where:

1, (u,0) = p(OF[A,t,u(t), S, 0)]= Y v, (O p(E)FIA & u(€). Sw, )] (3.19)

i=0

Also, since 7, (u,t)=r, (u” )+ r, (u, u",t) where:
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ot 0) = HGu' 1) =3, (OH &) (3.20)

i=0

and:
Huu" 6) = p@[F[Atu(@), S@. 0]~ Flat.u” (00,50 0)] (3.21)

follows that for u(f) and u (f) in U , = {u(t) :||u(t)||£ r}:

max |rm (u, t)| < HSl (A u,t)—S, A, l‘)H

—r<t<m

+i‘//,‘(f)HS1 (ﬂ,,u’t)_S(;t’u*t)H_i_gm < 2f(;t, I")Hu—u*u+gm (3.22)
i=0

is valid, where &,, > and m — .

Additionally, under the conditions that ||u|| <r and “u*u <r, we can take w to be 2r and,

therefore, follows that », <2f(4,r)w+¢,,, i.e., these numbers are bounded for all m.

m o

Because of the convergence of the Feier interpolation process [38] in the class of continuous
functions, for any fixed function u(%),r, (u",t) and the remainder r, (u, u",t) approach zero on

. * .
[— T, 7[] as m— oo . Furthermore, the remainder r, (u,u ,¢) also converge uniformly to zero

with respect to function u(?) belonging to the U :, = {u(l) : ‘u —u “ < a)}

Also, for fixed ¢ in [— T, ﬂ'] and u(f) in U ; , we split the set of numbers 1, 2,..., m into two

roups: S’ (u) and S”(u), assigningto S’(u) those k for which |&, —f/< &, andto S (u)
group gning k 1

the remaining ones. Then we have r,, (u, u',t)= S, ()+S,(t), where:

S0 = Y |Huu )= HE uu")y, )

keST (u)

and: $,(00= S |H@uu" )= HE uu )y, () (3.23)

keS™ (u)

Because of the continuity of H(¢,u, u*) on [— T, 7r]:
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[Si0]< 2wie<e) win=¢ (3:24)
=1

keS! (u) k

is valid and in this & can be arbitrarily small for small values of J;.

Moreover, if keS”(u), then by taking into account the explicit form of w,(f) and the

inequalities 0 < 72 —t&, < 277 and |Tm (t)| < Jr'"/?."'_l , we obtain:

AM7?

mo}

1S, (0| < (3.25)

in which M is the largest value of H(t,u,u”) intheset {te [— 7Z',7Z'],u cUy}.

Besides, the inequalities (3.24) and (3.25) are valid for all —z<¢t<7 and u(t)eU :, . Thus,
r, >0 as m—o0.

As u'(f) is the unique solution of (2.1)in U, , follows that this equation does not have any

solutions in the ring & < Hu —u*H <w, for 0<e<w, ie. there exists an a(g,0)>0 such that

|u =5, (40,0 > a(e,6) for &<|u-u"|<s.

In this ring therefore for any:
u(@),Ju—S,, (A u,0)| 2 |u =S, (2,u,0)| =[S, (A, u,6)= S, (A,u,1)| is valid, and for sufficiently large

m, |S;(Au,t)=S, (Au,t)|<r, <a(e,5) and hence |u-S, (A,u,0)|>a(e,5)-r, >0 for

large m. Thus, follows that the u; (¢) of (3.3) cannot be in the ring &< “u —u*“ <0 and,

therefore u; —u’ H <&, where ¢ is positive and arbitrary, which finally proves Theorem 3.1.

4, Conclusions

The present investigation was devoted to a study of new approximation methods for the solution
of the non-linear singular integro-differential equations, defined in closed-normed spaces, i.e.
Banach spaces. This was an exposition of the conditions of applicability of the method of
collocation to those non-linear equations and for the convergence of the method.

Beyond the above, a system of Chebyshev functions was used in the collocation approximation
method for the investigation of the existence of solutions for the system of non-linear equations
applied for the numerical solution of the non-linear singular integro-differential equations. Closed-
form solutions of such type of non-linear equations are not possible to be determined, because of
the big complication of their term. Hence, they are approximated only by special numerical
methods.

So, the collocation approximation methods can be used for the numerical evaluation of non-
linear singular integro-differential equations defined in general problems of structural analysis,
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fracture mechanics, fluid mechanics, potential flows, aerodynamics, turbomachines, etc. of great
importance.
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