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Abstract 
A sophisticated method is further improved in the area of four-dimensional multiphase flows for 
the determination of the properties of reservoir materials, when petroleum reserves together with 
water are moving through porous media. This multiphase problem seems to be very important for 
petroleum reservoir engineering. Consequently, the above petroleum engineering problem is 
reduced to the solution of a non-linear singular integral equation, which is numerically evaluated 
by using the Singular Integral Operators Method (S.I.O.M.). By the present study 4-D multiphase 
flows are proposed, which incorporates many 3-D multiphase flows over the same reservoir at 
specified intervals of time. So, by studying multiple time-lapsed 3-D surveys, or three-dimensional 
subsurface flows, portrays the changes in the reservoir over time. Also, several properties are 
analyzed and investigated for the porous medium equation of multiphase flows, defined as a 
Helmholtz differential equation. Hence, the estimation of the future petroleum production from a 
reservoir could be determined. Finally, an application is given for a well testing to be checked 
when a heterogeneous oil reservoir together with water in a multiphase flow is moving in a porous 
medium. Thus, by using the S.I.O.M., then the pressure response from the well test conducted in 
the above heterogeneous oil and water reservoir, is numerically calculated and investigated.  
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1. Introduction 
One of the most important problems on petroleum reservoir engineering is the study of the 

movement of oil reserves through porous media. Hence, very often the petroleum reservoir is 
mixed with water and by applying a well test analysis, then a history matching process takes place 
for the determination of the properties of the reservoir materials. In addition, the movement of oil 
reserves through porous media, produces both single-phase and multiphase flows. Hence, of 
primary interest is the investigation of the multiphase flows when the oil reservoir is mixed with 
water. Also, if a well test is conducted, then the well is subjected to a change of the flow rate and 
the pressure response can be further measured. Then the estimation of the future oil production 
from a reservoir can be determined. For the determination of several petroleum reservoir 
parameters, such as permeability, then numerical calculations should be used, as analytical 
solutions in most cases are not possible to be derived. Over the past years, several variants of the 
Boundary Element Method were used for the solution of petroleum engineering problems. As a 
start at the end of eight's Lafe and Cheng [1] proposed a BEM for the solution of steady flows in 
heterogeneous solids. At the same period Masukawa and Horne [2] and Numbere and Tiab [3] 
applied boundary elements for steady state problems of streamline tracking. Moreover, Kikani and 
Horne [4] solved transient problems by using a Laplace space boundary element model, for the 
analysis of well tests in several arbitrarily shaped reservoirs. On the contrary, Koh and Tiab [5] 
used boundary elements to describe the flow around tortuous horizontal wells, for homogeneous, or 
piecewise homogeneous reservoirs. Also, Sato and Horne [6], [7] applied perturbation boundary 
elements for the study of heterogeneous reservoirs. El Harrouni, Quazar, Wrobel and Cheng [8]
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proposed the use of a transformed form of Darcy's law combined with dual reciprocity boundary 
element method to handle heterogeneity. Additionally, Onyejekwe [9] applied a Green element 
method to isothermal flows with second order reactions. He [10], [11] used further a combined 
method of boundary elements together with finite elements for the study of heterogeneous 
reservoirs. In addition, Taigbenu and Onyejekwe [12] applied a transient one-dimensional transport 
equation by using a mixed Green element method. 

Over the last years, several non-linear singular integral equation methods were used 
successfully by Ladopoulos [13] - [22] for the solution of applied problems of solid mechanics, 
elastodynamics, structural analysis, fluid mechanics and aerodynamics. In addition, Ladopoulos 
[23] - [25] proposed a non-linear singular integral equations method in petroleum reservoir 
engineering, for the determination of the properties of the reservoir materials, when petroleum 
reserves are moving through porous solids. Hence, by the current study, the method of non-linear 
singular integral equations will be extended  in order to determine the properties of the reservoir 
materials in multiphase flows, when oil reserves mixed with water are moving through porous 
solids. 

Consequently, by using the Singular Integral Operators Method (S.I.O.M.), then the pressure 
response in multiphase flows from the well test conducted in a heterogeneous reservoir will be 
computed. Also, some properties of the porous medium equation, which is a Helmholtz differential 
equation, are proposed and investigated. Besides, basic properties of the fundamental solution will 
be analyzed and investigated. 

Moreover, 4-D multiphase flows can be taken on a given area multiple times over an extended 
period of time. Thus, through the current study 4-D multiphase flows are proposed, which 
incorporates many 3-D flows over the same reservoir at specified intervals of time. Studying 
multiple time-lapsed 3-D surveys, or three-dimensional subsurface images, portrays the changes in 
the reservoir over time. 

Finally, an application is given for a well testing to be investigated when a heterogeneous oil 
reservoir together with water in multiphase flow is moving in a porous medium. Then this problem 
is solved by using the Singular Integral Operators Method and so the pressure response from the 
well test conducted in this heterogeneous petroleum reservoir, will be computed. Hence, this is 
very important in petroleum reservoir engineering in order the size of the reservoir to be evaluated. 

The proposed petroleum engineering method, as it is a complicated non-linear numerical 
method can give results for heterogeneous porous media (which of course are the solids in reality) 
and not only for homogeneous solids as are giving the analytical or numerical existing methods. 
Thus, the estimation of the properties and the future petroleum production from a new oil reservoir 
could be done exactly, and not estimated as by the existing methods. From the above mentioned 
points it can be understood the evidence of the applicability of the new method, as it is based on 
non-linear software.  Moreover its novelty, as it is based on the theory of non-linear singular 
integral equations.  

Thus, the non-linear singular integral equation methods which were used with big success for 
the solution of several engineering problems of fluid mechanics, hydraulics, aerodynamics, solid 
mechanics, elastodynamics, and structural analysis, are further extended by the current research for 
the solution of petroleum reservoir engineering problems in multiphase flows. In such a case the 
non-linear singular integral equations are used for the solution of one of the most important and 
interesting problems for petroleum reservoir engineers. 
 
2.  4-D Multiphase Flows of Petroleum Reserves by Well Test Analysis 

Petroleum well test analysis is a kind of a very important history matching process for the 
determination of the properties of reservoir solids. So, during the movement of petroleum reserves 
through porous media, then both single-phase and multiphase flow occurs. By the present paper the 
multiphase flows are studied when the petroleum reserves are mixed with water. Besides, when a 
petroleum well test is conducted then the well is subjected to a change of its flow rate and the 
resulting pressure response is possible to be measured. In addition, this pressure is compared to 
analytical or numerical models in order to estimate reservoir parameters such as permeability. Then 
the estimation of the future petroleum production from the reservoir can be evaluated. 
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A petroleum reservoir well test analysis in a multiphase flow is calculated by using the porous 

medium equation: 
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in which  λ  denotes the relative permeability, λo the permeability of the oil, o  the porosity of the 
oil, ξo the viscosity of the oil and λw, w, ξw the corresponding values of the water and  p the pressure 
of the reservoir. 
    

By replacing variables as follows: 
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then (2.1) can be written as: 
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Thus, eqn (2.4) denotes a Helmholtz differential equation. 

 
Additionally, consider by  u*(x,y) the fundamental solution of any point  y, because of the 

source point x. Then the fundamental solution can be given by the following relation:  
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which can be further written as: 
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Thus, eqn (2.6) denotes the Helmholtz potential equation governing the fundamental solution. 

 
Consider further by u* the fundamental solution chosen so that to enforce the Helmholtz 

equation in terms of the function  u, in a weak form. Then the weak form of Helmholtz equation 
will be written as following: 
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in the solution domain Ω. 
 

Moreover, by applying the divergence theorem once in (2.7), we obtain a symmetric weak form: 
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where n denotes the outward normal vector of the surface  S. 
    

Thus, in the symmetric weak form the function  u and the fundamental solution u* are only 
required to be first - order differentiable. Moreover, by applying the divergence theorem twice in 
(2.7) we have: 
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Consequently, (2.9) is the asymmetric weak form and the fundamental solution  u*  is required to 

be second - order differentiable. On the contrary, u is not required to be differentiable in the 
domain Ω.   

By combining eqs (2.6) and (2.9), then one obtains: 
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which can be further written as: 
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where  q(y) denotes the potential gradient along the outward normal direction of the boundary 
surface: 
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and the kernel function: 
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By differentiating (2.11) with respect to xk , one obtains the integral equation for potential 

gradients  u,k(x) by the following formula: 
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3. Basic Properties of 4-D Multiphase Petroleum Flows 
We rewrite the weak form of (2.6) governing the fundamental solution, by the following 

relation: 
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where  c denotes a constant, considering as the test function. 
 

In addition, eqn (3.1) can be further written as: 
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Moreover, (3.2) takes the form: 
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By considering further an arbitrary function u(x) in Ω as the test function, then the weak form of 

(2.6) may be written as: 
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and further as: 
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Finally, (3.5) takes the form: 
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Besides, if x approaches the smooth boundary )( x , then the first term in (3.6) may be 

written as following:    
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in the sense of a Cauchy Principal Value (CPV) integral. 
 

For the understanding of the physical meaning of (3.7), eqs (3.3) and (3.6) can be written as:  
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From (3.8) follows that only a half of the source function at point x is applied to the domain Ω,  

when the point x approaches a smooth boundary, x . 
 

Additionally, consider another weak form of eqn (2.6) by supposing the vector functions to be 
the gradients of an arbitrary function u(y) in Ω, chosen in such a way that they have constant 
values:  
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Then the weak form of eqn (2.6) will be written as:   
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By applying further the divergence theorem, then eqn (3.11) takes the following form:      
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Besides, the following property exists: 
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By adding eqs (3.12) and (3.13) then one obtains: 
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which takes finally the form: 
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4.  4-D Multiphase Flows by Non-linear Singular Integral Equations   

The porous medium equation (2.1) will be further written in another form, in order a singular 
integral equation representation to be applicable: 
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In order the non-linear singular integral equation (4.2) to be numerically evaluated, then the 

Singular Integral Operators Method (S.I.O.M.) will be used. Hence, the non-linear singular integral 
equation (4.2) is approximated by the formula: 
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where  M  denotes the total number of elements. 
 

In addition, we introduce the following functions describing the pressure at any point in an 
element, in terms of the nodal pressures: 
 
                                                                   jj pyxNyxp ),(),(                                                 (4.5) 

    
By replacing (4.5) then eqn (4.4) takes the form: 
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5.  Heterogeneous Reservoirs Application of 4-D Petroleum Multiphase Flows  

 
The previous mentioned theory will be applied to the determination of the water production 

history, in a well known problem where the exact Buckley - Leverett solution is valid [26].  
Thus, by using the Singular Integral Operators Method (S.I.O.M.) as described in the previous 

paragraphs, then the computation of the water was effected and a comparison was done with exact 
Buckley - Leverett solution. According to this problem water is injected into one end of a one 
dimensional oil reservoir and fluids are produced from the other end of the reservoir. In this case 
the injected water forms a piston - like shock. Hence, Table 1 shows the watercut with respect to 
the time. 

The computational results of the watercut were compared to the analytical solutions of the same 
problem. From Table 1 it can be seen that there is very small difference between the computational 
results and the analytical solutions. Finally same results are shown, in Figure 1 and in three-
dimensional form in Figure 1a. 

 
 
 

Table 1 
 

Time 
(days) 

Watercut (%) 
S.I.O.M. 

Watercut (%) 
Analytical 

0 0 0 
10 0 0 
20 0 0 
30 0 0 
40 0 0 
50 0 0 
51 6 0 
52 20 0 
53 40 0 
54 60 100 
55 98 100 
56 100 100 
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Fig. 1 Multiphase Flow of Oil Reservoir Mixed with Water. 
 
 
 
 
 

 
 
 

Fig. 2  3-D Distribution of Multiphase Flow of Oil Reservoir Mixed with Water. 
 

6. Conclusions 
A non-linear mathematical method has been further improved as an attempt to determine the 

properties of petroleum reservoir materials mixed with water in multiphase flow. Hence, the study 
of the movement of oil reserves through porous media is very important for petroleum reservoir 
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engineers. This problem was reduced to the solution of a non-linear singular integral equation, 
which was numerically solved by using the Singular Integral Operators Method (S.I.O.M.). 

In addition, several important properties of the porous medium equation, which is a Helmholtz 
differential equation, were analyzed and investigated. Thus, the fundamental solution of the porous 
medium equation was proposed and studied. Moreover, some basic properties of the fundamental 
solution were further investigated. The new method, as it is a complicated non-linear numerical 
method can give results for heterogeneous porous media (which of course are the solids in reality) 
and not only for homogeneous solids as are giving the analytical or numerical existing methods. 
Thus, the estimation of the properties and the future petroleum production from a new oil reservoir 
could be done exactly, and not estimated as by the existing methods. 

 An application was finally given to the determination of the water production history, in a well 
known problem where the exact Buckley - Leverett solution is valid. The above problem was 
solved by using the Singular Integral Operators Method and thus the watercut, was computed. 
According to this problem water was injected into one end of a one dimensional oil reservoir and 
fluids are produced from the other end of the reservoir. In this case the injected water forms a 
piston - like shock. 

 During the past years, non-linear singular integral equation methods have been used 
successfully for the solution of several important engineering problems of structural analysis, 
elastodynamics, hydraulics, fluid mechanics and aerodynamics. For the numerical solution of the 
non-linear singular integral equations of the above problems, were used several aspects of the 
Singular Integral Operators Method (S.I.O.M.). Thus, by the present research such methods were 
extended for the solution of oil reserves problems in multiphase flows of petroleum reservoir 
engineering.   
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