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Abstract 
"Non-linear Real-Time Expert Seismology" is a modern method by using a non-linear 3-D elastic 
waves real - time expert system, for the exploration of the on-shore and off-shore oil & gas reserves 
all over the world. The above innovative hydrocarbon exploration method is working by using 
elastic (seismic) waves moving in an unbounded subsurface medium, for searching the land and 
marine petroleum reservoir developed on the continental crust and in deeper water ranging from 
300 to 3000 m, or even deeper. This new method can be used at any depth of seas and oceans all 
over the world and for any depth in the subsurface of existing petroleum reserves. By the present 
paper 3 & 4-D multiphase flows are proposed, which incorporates many 3-D multiphase flows over 
the same reservoir at specified intervals of time. Hence, by studying multiple time-lapsed 3-D 
surveys, or three-dimensional subsurface flows, portrays the changes in the reservoir over time. 
Besides, several mechanical properties of rock regulating the wave propagation phenomenon 
appear as spatially varying coefficients in a system of time-dependent hyperbolic partial differential 
equations. The wave equation describes the propagation of the seismic waves through the earth 
subsurface and this equation is finally reduced to a Helmholz differential equation. Consequently, 
the Helmholtz differential equation is numerically solved by using the Singular Integral Operators 
Method (S.I.O.M.). Furthermore, several properties are analyzed and investigated for the wave 
equation. An application is given to the determination of the seismic field radiated from a pulsating 
sphere into an infinite homogeneous medium.  
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1.  3 & 4-D Non-linear Real-Time Expert Seismology  
The new method "Non-linear Real-Time Expert Seismology" is the main and best tool which 

can be used by the petroleum industry to map oil & gas deposits in the Earth’s upper crust. Thus, 
environmental and civil engineers can also use variants of the above modern technique to locate 
bedrock, acquifers, and other near-surface features, academic geophysicists can extend it to a tool 
for imaging the lower crust and mantle. The new petroleum exploration method of "Non-linear 
Real-Time Expert Seismology" was introduced and investigated by E.G.Ladopoulos [25] - [30], as 
an extension on his methods on non-linear singular integral equations in potential flows, fluid 
mechanics, structural analysis, solid mechanics, hydraulics and aerodynamics [15] - [24].  

Additionally, seismic wave propagation, the physical phenomenon underlying the "Non-linear 
Real-Time Expert Seismology" as well as other types of seismology, is modeled with reasonable 
accuracy as small-amplitude displacement of a continuum, using various specializations and 
generalizations of linear elastodynamics. In the above models, there are several mechanical 
properties of rock regulating the wave propagation phenomenon appear as spatially varying 
coefficients in a system of time-dependent hyperbolic partial differential equations.  

In general, the "Non-linear Real-Time Expert Seismology" seeks to extract maps of the Earth’s 
sedimentary crust from transient near-surface recording of echoes, stimulated by explosions or 
other controlled sound sources positioned near the surface. Hence, reasonably accurate models of 
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seismic energy propagation take the form of hyperbolic systems of partial differential equations, in 
which the coefficients represent the spatial distribution of various mechanical characteristics of 
rock, like density, stiffness, etc. Consequently, the exploration geophysics community has 
developed various methods for estimating Earth structure from seismic data, however the very 
modern and groundbreaking method "Non-linear Real-Time Expert Seismology" seems to be the 
best tool for on-shore and off-shore petroleum reserves exploration for very deep drillings ranging 
up to 20,000 or 30,000 m.  

Furthermore, 3 & 4-D seismic can help to locate untapped pockets of oil or gas within the 
reservoir. Typically, 4-D seismic data is processed by subtracting the data from one survey from 
the data of another. The amount of change in the reservoir is defined by the difference between the 
two. If no change has occurred over the time period, the result will be zero. 

During the last years several variants of integral equations methods were used for the solution of 
elastodynamics and acoustic problems. Already at the end of sixty's H.A. Shenk [1] stated that the 
integral equation for potential mathematically failed to yield unique solutions to the exterior 
acoustic problem and proposed a method in which an over determined system of equations at some 
characteristic frequencies was formed by combining the surface Helmholtz equation with the 
corresponding interior Helmholtz equation. Thus, it was analytically proved, that the system of 
equations provide a unique solution at the same characteristic frequencies, to some extent. 
However, the above method might fail to produce unique solutions, when the interior points used in 
the collocation of the Boundary Integral Equations were located on a nodal surface of an interior 
standing wave. 

Besides, at the start of seventy's A.J. Burton and G.F. Miller [2] proposed a combination of the 
surface Helmholtz integral equation for potential and the integral equation for the normal derivative 
of potential at the surface, to circumvent the problem of nonuniqueness at characteristic 
frequencies. Their method was called Composite Helmholtz Integral Equation. Several years later, 
W.L. Meyer, W.A. Bell, B.T. Zinn and M.P. Stallybrass [3] and T. Terai [4], developed 
regularization techniques for planar elements for the calculation of sound fields around three 
dimensional objects by integral equation methods.  

On the contrary, Z. Reut [5], investigated further the Composite Helmhholtz Integral Equation 
Method by introducing the hypersingular integrals. Also, in the above numerical method, the 
accuracy of the integrations affects the results and the conventional Gauss quadrature can not be 
used directly.  

The basic idea by using the gradients of the fundamental solution to the Helmholtz differential 
equation for velocity potential, as vector test functions to write the weak form of the original 
Helmholtz differential equation for potential and so directly to derive a non hypersingular boundary 
integral equations for velocity potential gradients, was proposed and investigated by H. Okada, H. 
Rajiyah and S.N. Atluri [6] and H. Okada and S.N. Atluri [9]. The above scientists used the 
displacement and velocity gradients to directly establish the numerically tractable displacement and 
displacement gradient boundary integral equations in elasto-plastic solid problems and traction 
boundary integral equations. Moreover, C.C. Chien, H. Rajiyah and S.N. Atluri [7], employed 
some known identities of the fundamental solution from the associated interior Laplace problem, to 
regularize the hypersingular integrals.   

In addition, T.W. Wu, A.F. Seybert and G.C. Wan [8], proposed the regularized normal 
derivative equation, to be converged in the Cauchy principal value sense. The computation of 
tangential derivatives was required everywhere on the boundary. Also, W.S. Hwang [10], reduced 
the singularity of the Helmholtz integral equation by using some identities from the associated 
Laplace equation. On the other hand, the value of the equipotential inside the domain must be 
computed, because the source distribution for the equipotential surface from the potential theory 
was used to regularize the weak singularities. 

S.A. Yang [11] used further the identities of the fundamental solution of the Laplace problem to 
efficiently solve the problem of acoustic scattering from a rigid body. Moreover, Z.Y. Yan, K.C. 
Hung and H. Zheng [12], in order to solve the intensive computation of double surface integral, 
employed the concept of a discretized operator matrix to replace the evaluation of double surface 
integral with the evaluation of two discretized operator matrices.  
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On the other hand, Z.D. Han and S.N. Atluri [13] used traction boundary integral equations for 
the solution of the Helmholtz equation. Beyond the above, recently was used by S.N. Atluri, Z.D. 
Han and S. Shen [14] the meshless method, as an alternative numerical method, to eliminate the 
drawbacks in the Finite Element Method and the Boundary Element Method.     

By the present research, the Singular Integral Operators Method (S.I.O.M.) will be used for the 
solution of elastodynamic problems by using the Helmholtz differential equation. For the above 
derivation will be used the gradients of the fundamental solution to the Helmholtz differential 
equation for the velocity potential. Besides, several basic identities governing the fundamental 
solution to the Helmholtz differential equation for the velocity potential are analyzed and 
investigated. 

Thus, by using the Singular Integral Operators Method (S.I.O.M.), then the acoustic velocity 
potential will be computed. In addition, some properties of the wave equation, which is a 
Helmholtz differential equation, are proposed and investigated. Some basic properties of the 
fundamental solution will be further derived. 

An application is finally proposed for the determination of the seismic field radiated from a 
pulsating sphere into an infinite homogeneous medium. Hence, by using the Singular Integral 
Operators Method (SIOM), then the acoustic pressure radiated from the above pulsating sphere will 
be computed. This is very important in petroleum reservoir engineering in order the size of the 
reservoir to be evaluated. 

Consequently, the S.I.O.M. which was used very successfully for the solution of several 
engineering problems of fluid mechanics, hydraulics, aerodynamics, solid mechanics, potential 
flows and structural analysis, are further extended in the present investigation for the solution of 
petroleum reservoir engineering problems in elastodynamics.  
 

2.  3 & 4-D Non-linear Seismic Wave Motion for Elastodynamics  
In general, seismic wavelengths run in the tens of meters, so it is reasonable to presume that the 

mechanical properties of rocks responsible for seismic wave motion might be locally homogeneous 
on length scales of millimeters or less, which means that the Earth can be modeled as a mechanical 
continuum. Hence, except possible for a few meters around the source location, the wavefield 
produced in seismic reflection experiments does not appear to result in extended damage or 
deformation, so the waves are entirely transient. These considerations suggest a non-linear wave 
motion as a mechanical model in elastodynamics.  
    

In an homogeneous medium the equations of elastodynamics are given by the following 
formulas: 

                                                                       b
t
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in which  v  denotes the particle velocity field, σ the stress tensor, b a body force density, γ a defect 
in the elastic constitutive law, ρ  the mass density, t the time and C the Hooke's tensor. 
 

Furthermore, the right hand sides b and γ  provide a variety of representations for external 
energy input to the system. 
 

Consequently, the new method for on-shore and off-shore petroleum reserves exploration "Non-
linear Real-Time Expert Seismology" uses transient energy sources and produce transient wave 
fields. Thus, the appropriate initial conditions for the system of eqs (2.1) and (2.2)  are as 
following: 

 
                                                              v = 0,  σ = 0,       for: t << 0                                             (2.3) 
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The Hooke's tensor, for isotropic elasticity, has only two independent parameters, the 

compressional and shear wave speeds  and . It is instructive to examine direct measurements 

of these quantities, made in a borehole. Hence, there are two types of elastic waves produced: I) P-
waves, which are primary or “compressional” waves, and  II) S-waves, or shear waves. 

pc sc

 
By the present research, the seismic problem will not be developed in the generalized context of 

the elastodynamic system (2.1) and (2.2). Instead, our research will be limited to a special case of 
seismology. Hence, by the current model, it is supposed that the material does not support shear 
stress. Then the stress tensor becomes scalar, σ = −pI, p being the pressure, and only one 
significant component, the bulk modulus κ, is left in the Hooke tensor.  
  

Thus, the system (2.1) and (2.2) reduces to: 
 

                                                                      bp
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                                                    (2.5) 

 
where the energy source is represented as a constitutive law defect  h. 
 
 

On the other hand, the proposed model predicts wave motion c with spatially varying wave 
speed: 

 

                                                                             



c                                                              (2.6) 

 
in which  ρ is the mass density and  κ  the bulk modulus. 
    

In addition, it is very convenient to represent the elastodynamics in terms of the acoustic 

velocity potential :  ,  with the following results: 
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and:                                                                   u
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By using (2.6) and (2.7), then the acoustic system (2.4) and (2.5) reduces to the wave equation, 

because of the propagation of seismic waves through an unbounded homegeneous solid: 
 

                                                             hu
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11

2

2

2
                                                 (2.8) 

 
Furthermore, by assuming that density ρ to be constant and that the source (transient 

constitutive law defect h) is an isotropic point radiator located at the source point, then the wave 
equation (2.8) reduces to the following Helmholtz differential equation: 
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Besides, for time harmonic waves with a time factor , then the wave equation (2.9) reduces 
to: 

tie 

 

                                                                                                                           (2.10) 022  uku
 
in which the wave number k is equal to: 
 

                                                                            
c

k


                                                             (2.11) 

 
with  ω  the angular frequency and  c  the speed of sound in the medium at the equilibrium state.       
                    

The fundamental solution of the wave equation (2.1) at any field point  y due to a point sound 
source  x, for the two dimensions is valid as following: 
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where  1i ,  denotes the Hankel function of the first kind and r is the distance 

between the field point  y and the source point x  (

)()1(
0 krH

yx r ). 

    
Beyond the above, the fundamental solution of the wave equation (2.1) for the three dimensions 

is equal to: 
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The fundamental solution  is further governed by the wave equation: ),(* yxu
 

                                                                                         (2.16)   0),(),(),( *2*2  yxyxyx uku
    

So, eqn (2.16) is referred as the Helmholtz potential equation governing the fundamental 
solution.  
 

Also, consider the weak form of the Helmholtz equation to be given by the relation: 
 

 

                                                                                                              (2.17) 0)( *22 


duuku
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in the solution domain Ω. 
 

Then, by applying the divergence theorem once in (2.17), we obtain a symmetric weak form: 
 

 

                                                                                    (2.18) 

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in which  n  denotes the outward normal vector of the surface  S. 
 

Thus, in the symmetric weak form the function  u and the fundamental solution u* are only 
required to be first - order differentiable. Also, by applying the divergence theorem twice in (2.17) 
then one has:  
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Thus, (2.19) is the asymmetric weak form and the fundamental solution  u*  is required to be 
second - order differentiable. Furthermore, u is not required to be differentiable in the domain Ω.   
 

By combining further eqs (2.16) and (2.19), then we obtain: 
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which can be further written as: 
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where q(y) denotes the potential gradient along the outward normal direction of the boundary 
surface: 
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and the kernel function: 
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By differentiating (2.21) with respect to xk , we obtain the integral equation for potential 

gradients  u,k(x) by the following relation: 
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3. Some Properties of the Fundamental Solution  

The weak form of (2.6) governing the fundamental solution, takes the following form: 
                                               

                                                              (3.1)   

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where  c denotes a constant, considering as the test function. 
 

Additionally, (3.1) can be written as: 
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Thus, (3.2) takes the following form: 
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Moreover, by considering an arbitrary function u(x) in Ω as the test function, then the weak 

form of (2.6) can be written as: 
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and further as: 
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Finally, (3.5) takes the form: 
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On the other hand, if x approaches the smooth boundary )( x , then the first term in (3.6) 

will be written as: 
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                                        x
 
in the sense of a Cauchy Principal Value (CPV) integral. 
 

For the understanding of the physical meaning of (3.7), then eqs (3.3) and (3.6) may be written 
as following:  
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Consequently, from (3.8) follows that only a half of the source function at point x is applied to 

the domain Ω,  when the point x approaches a smooth boundary, x . 
 

Let us further consider another weak form of eqn (3.6) by supposing the vector functions to be 
the gradients of an arbitrary function u(y) in Ω, chosen in such a way that they have constant 
values:  

 
                                )()( ,, xy kk uu  ,    for  k=1,2,3                                           (3.10) 

 
Hence, the weak form of eqn (3.6) takes the following form:   
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By applying further the divergence theorem, then eqn (3.11) may be written as:      
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Besides, the following property exists: 
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By adding eqs (3.12) and (3.13) then one obtains: 

 

                                                            
 


 

dSuundSuun iikkii ),()()(),()()( *
,,

*
,, yxxyyxxy

                                                                                                                                                    (3.14)

                          
 

 0)()(),()(),( ,,
*2

,
* xxyxxyx kkk uduukdSu

                         
which takes finally the form: 
 

                                                                
 


 

dSuuRedSuun itiktkii ),()(),()()( *
,

*
,, yxxyxxy

 8



E.G. Ladopoulos 
 

                                                                                                                                                    (3.15)
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4. Application of Singular Integral Operators Method (SIOM)   
By the current investigation the regularization of the Singular Integral Operators Method will be 

considered together with the possibility of satisfying the SIOM in a weak form at  , through a 
generalized Petrov - Galerkin formula. 
 

Consequently, by subtracting (3.6) from (2.21), we obtain: 
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By using further (3.9), then (4.1) can be applied at point  x  on the boundary  , as follows: 
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Additionally, the Petrov-Galerkin scheme can be used in order the weak form of (4.2) to be 

written as: 
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where  denotes a test function on the boundary )(xu  . 
    

By using further (3.9), then from (4.3) follows: 
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Finally, by choosing the test function  f(x) in such way to be identical to a function which is 

energy-conjugate to u(x), then the following Galerkin SIOM is obtained: 
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Hence, (4.5) is referred to a symmetric Galerkin SIOM. 
  
 

5. Non-linear Application by Seismic Wave Motion  
An application of the previous theory is proposed, to the determination of the seismic field 

radiated from a pulsating sphere into an infinite homogeneous medium (Figure 1).  
 

 
 

Fig. 1 Pulsating Sphere Radiating Field into an Infinite Homogeneous Medium. 
 

 
Consequently, by using the Singular Integral Operators Method (S.I.O.M.) as described in the 

previous paragraphs, then the computation of the acoustic pressure radiated from the above 
pulsating sphere is determined. 
  

Additionally, the analytical solution of the acoustic pressure for a sphere of radius  a, pulsating 
with uniform radial velocity  , is given in [7]: av
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e
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                                                (5.1) 

 
in which  p(r)  denotes the acoustic pressure at distance r,  is the characteristic impedance and  k  

the wave number. 
0z

    
In Table 1 and Table 2, the real and imaginary parts of dimensionless surface acoustic pressures 

are shown with respect to the reduced frequency ka. Thus, the computational results by using the 
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S.I.O.M. were compared to the analytical solutions of the same problem. From the above Tables it 
can be seen that there is very small difference between the computational results and the analytical 
solutions. Finally same results are plotted, in Figures 2 and 3, and in three-dimensional form in 
Figures 2a and 3a. 
 

 
Table 1 

 
ka Re(p(a)/z0va) 

Analytical 
Re(p(a)/z0va) 

S.I.O.M. 
0.00 0.00 0,00 
0.40 0.10 0.11 
0.60 0.30 0.32 
0.75 0.40 0.41 
1.00 0.50 0.52 
1.25 0.60 0.60 
1.50 0.70 0.71 
2.00 0.80 0.80 
2.50 0.86 0.87 
3.00 0.90 0.91 
3.50 0.92 0.93 
4.00 0.94 0.94 
4.50 0.96 0.96 
5.00 0.97 0.97 
6.00 0.98 0.98 
7.00 0.99 0.99 
7.50 0.99 0.99 

 
Table 2 

 
ka Im(p(a)/z0va) 

Analytical 
Im(p(a)/z0va) 

S.I.O.M. 
0.00 0.00 0,00 
0.20 0.22 0.23 
0.40 0.30 0.31 
0.50 0.40 0.41 
0.60 0.45 0.45 
0.80 0.48 0.48 
1.00 0.50 0.49 
1.50 0.45 0.45 
2.00 0.40 0.40 
2.50 0.35 0.36 
3.00 0.30 0.31 
3.50 0.26 0.26 
4.00 0.24 0.24 
4.50 0.21 0.21 
5.00 0.19 0.20 
5.50 0.17 0.17 
6.00 0.15 0.15 
6.50 0.14 0.14 
7.00 0.12 0.12 
7.50 0.11 0.11 
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Fig. 2 Real Part of Dimensionless Surface Acoustic Pressure of a Pulsating . 
 
 

 
 

Fig. 2a  3-D Distribution of Real Part of Dimensionless Surface Acoustic Pressure of a Pulsating . 
 

 
 
 

 
Fig. 3 Imaginary Part of Dimensionless Surface Acoustic Pressure of a Pulsating . 
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Fig. 3a 3-D Distribution of Imaginary Part of Dimensionless Surface Acoustic Pressure of a Pulsating . 

 
 

6. Conclusions 
The modern technology "Real-time Expert Seismology" as was introduced and investigated by 

E.G.Ladopoulos [25]-[30] is further improved for the exploration of on-shore and off-shore 
petroleum reservoir. Such a groundbreaking method can be used at any depth of seas and oceans all 
over the world ranging from 300 to 3000 m, or even deeper and for any depth like 20,000 m or 
30,000 m in the subsurface of existing petroleum and gas reserves.  
Hence, the benefits of the new theory of "Real-time Expert Seismology" in comparison to the old 
theory of "Reflection Seismology" are the following: 
1. The new method uses the special form of the crests of the geological anticlines of the bottom of 
the sea, in order to decide which areas of the bottom have the most possibilities to include 
petroleum. 
On the contrary, the existing theory is only based to the best chance and do not include any 
theoretical and sophisticated model. 
2. The new method of elastic (sound) waves is based on the difference of the speed of the sound 
waves which are traveling through solid, liquid, or gas. In a solid the elastic waves are moving 
faster than in a liquid and the air, and in a liquid faster than in the air. 
Existing theory is based on the application of Snell's law and Zoeppritz equations, which are not 
giving good results, as these which we are expecting with the new method. 
3. The new method is based on a Real-time Expert System working under Real Time Logic, that 
gives results in real time, which means every second. 
Existing theory does not include real time logic. 

Consequently, from the above three points it can be well understood the evidence of the 
applicability of the modern technology of "Non-linear Real-time Expert Seismology". Moreover its 
novelty, as it is based mostly on a theoretical and very sophisticated Real-time Expert model and 
not to practical tools like the existing method. 

By the current paper, the Singular Integral Operators Method (S.I.O.M.) has been used for the 
solution of the elastodynamic problems used in "Non-linear Real-time Expert Seismology"  by 
applying the Helmholtz differential equation. In this derivation the gradients of the fundamental 
solution to the Helmholtz differential equation for the velocity potential, has been used. 
Furthermore, several basic identities governing the fundamental solution to the Helmholtz 
differential equation for the velocity potential were analyzed and investigated. 

Thus, by using the S.I.O.M., then the acoustic velocity potential has be computed. Also, several 
properties of the wave equation, which is a Helmholtz differential equation, were proposed and 
investigated. Some basic properties of the fundamental solution have been further derived. 
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Finally, an application was given to the determination of the seismic field radiated from a 
pulsating sphere into an infinite homogeneous medium. Consequently, by using the S.I.O.M., then 
the acoustic pressure radiated from the above pulsating sphere has be computed. This is very 
important in hydrocarbon reservoir engineering in order the size of the reservoir to be evaluated. 
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