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Abstract 

A sophisticated numerical method is further investigated and studied for the approximation of the 

non-linear singular integro-differential equations defined in Banach spaces. Hence, the collocation 

numerical calculation method is applied for the approximation of such type of non-linear equations, 

by using a system of Chebyshev functions. Beyond the above, through the application of the 

collocation numerical method is investigated the existence of solutions for the system of non-linear 

equations used for the approximation of the non-linear singular integro-differential equations, 

which are defined in a complete normed space, i.e. a Banach space. 
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1. Introduction 

Several problems of engineering mechanics, like structural analysis, fluid mechanics and 

aerodynamics, are reduced to the solution of non-linear singular integral and integro-differential 

equations. Thus, there is an increasing interest for the solution of such type of non-linear integral 

equations, since these are connected with a wide range of problems of an applied character. The 

theory of non-linear singular integral and integro-differential equations seems to be particularly 

complicated if closely linked with applied mechanics problems. 

Having in mind the implications for different problems of engineering mechanics, 

E.G.Ladopoulos [1]-[9] and E.G.Ladopoulos and V.A.Zisis [10]-[12] introduced and investigated 

non-linear singular integral equations and non-linear finite-part singular integral equations. This 

type of non-linear equations has been applied to many problems of structural analysis, fluid 

mechanics and aerodynamics.  

On the other hand, some studies have been published, investigating non-linear integral 

equations of simpler form, without any singularities. Among the authors who studied non-linear 

theories used in applied mechanics, we mention the following: J.Andrews and J.M.Ball [13], 

S.S.Antman [14], [15], S.S.Antman and E.R.Carbone [16], J.M.Ball [17] - [19], H.Brezis [20], 

P.G.Ciarlet and P.Destuynder [21], P.G.Ciarlet and J.Necas [22], [23], J.E.Dendy [24], Guo Zhong-

Heng [25], H.Hattori [26], D.Hoff and J.Smoller [27], W.J.Hrusa [28], R.C.MacCamy [29] - [31], 

B.Neta [32], [33], R.W.Ogden [34], R.L.Pego [35], M.Slemrod [36], and O.J.Staffans [37]. 

By the current study  a new computational method is further improved, for the numerical 

evaluation of the non-linear singular integro-differential equations defined in Banach spaces. Thus, 

a new form of the collocation approximation method is investigated for the numerical calculation 

of the non-linear singular integro-differential equations, by studying the existence and uniqueness 

for their solution. For the numerical solution of the non-linear singular integro-differential 

equations which are defined in the Banach spaces, is used a system of Chebyshev functions 

continuous on    , . Hence, through application of the collocation method the existence of 

solutions for the system of non-linear equations used for the approximation of the non-linear 

singular integro-differential equations is investigated. 
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2. New Methods for Existence Theorems of Non-linear Singular Integrodifferential Equations  

 

Definition 2.1 

Consider the non-linear singular integro-differential equation: 

                               )(),(),(,, tutuStutF                                                  (2.1) 

with: 
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where u(x)  is the unknown function,  g(t)  a known function,  ( )   t   and  

 ),(),(,, tuStutF    is the non-linear kernel. 

 

 

Definition 2.2 

Let    0
1 ,, tCp    denote the set of functions u(t) satisfying a Lipschitz condition on the 

interval   , ,  which satisfy equation  0)( 0 tu   and for which the period  )()( tutp    is 

continuous on the above interval, where  p(t)  is some nonnegative function defined on   ,   

such that the integrals: 
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exist. 

By introducing the norm  )()(max)( tutptu    into    0
1 ,, tCp  ,  it becomes a complete 

normed space, and thus a Banach space. 

 

 

Theorem 2.1 

Consider the nonlinear singular integro-differential equation (2.1). Besides, concerning  

 vutF ,,,   we assume that the function   ),(),(,,)( tuStutFtp    is continuous on   ,   for  

  0
1 ,,)( tCtu p  ,  has continuous partial derivatives with respect to  u  and  v  with the other 

arguments fixed, and satisfies the inequalities: 
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in the region    ),0(,,  rtrvur  ,  where  ),,(1 xf    and  ),,(2 xf    are 

nondecreasing functions of     and  x . 

Consider further that  qrf ),(   with   rq 0,10 .  Then, for any initial function  

 u t U u t u t rr0( ) ( ): ( )   ,  the sequence: 

                                         ,...)2,1,0(),,()( 11  ntuStu nn                                               (2.6) 

converges to the unique solution    0
1

* ,,)( tCtu p    of the non-linear singular integro-

differential equation (2.1). 

 

Proof. We replace  ),( tf    by two terms as follows: 

                                       ),,(),,(),( 21 ttfttftf                                                   (2.7) 

and consider the following equation: 

                                                           rhrrf  )(),( 2                                                            (2.8) 

in which: 

                               )0,0,,()(max)(2 tFtph
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Additionally, the operator  ,...2,1,0),,,(1 ntuS n   in (2.6) shall be of the form: 

                                 
t
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uIuFtuS
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and  )(0 tu   is a given function. Hence, on the basis of the study in [10] the theorem can be proved. 

 

If  qrf ),( 0 ,  where  0r   is a root of (2.8), then for any initial approximation  
0

in)(0 rUtu ,  

the sequence (2.6) converges to the unique solution    0
1

* ,,)( tCtu p     of  (2.1). Moreover: 
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on  , , in which: 

 

                                 )()(),(),(,,)(max)()( 000   ttutuItutFtptat . 

 

3. New Methods for Collocation Approximation Methods - Non-linear Singular Integro-

differential Equations  

 

Theorem 3.1 

Consider the non-linear singular integro-differential equation (2.1). Suppose that the function  

 vutF ,,,   has continuous partial derivatives with respect to  u  and  v,  which for  0)( tp   on  

 ,   satisfies (2.5) in the square   rrvu ,,    and suppose that  1),( qrf    with  ),( rf    

given by (2.7). 

 

Furthermore, consider the system of non-linear equations: 

                                             ),...,2,1(0),( mivH im                                                  (3.1) 

in which   m
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where   )(xk   is a given system of Chebyshev functions which are continuous on   , .  Then 

the system of non-linear equations (3.1) has a solution  )(* tum   in     rrtutuUr 0,)(:)(   

which approaches the unique solution  )(* tu   of (2.1) as  m . 

 

Proof. According to (3.1) consider the equation: 

                                             0),( tuH mm                                                           (3.3) 

in which  ),( tuH mm   is a function of the form: 
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and  ij   is the Kronecker delta. 

 

In addition, consider the existence of a solution of (3.3). Thus, we use an interpolation process of 

the form (2.6), which in connection with this equation, may be written as: 
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and  )()0( tum   is a given initial function. 

 

It can be therefore shown that, under the same assumptions under which we proved Theorem 

2.1, for any two functions  )(1 tu   and  )(2 tu   belonging to the ball   rtutuUr  )(:)( ,  the 

following inequality norm of    0
1 ,, tCp    is fulfilled: 
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where  ),(),,(,1,1 221121 tt   . 

 

Then, as  utatu )()(    and  utbtuI )(),(  ,  where  a(t)  and  b(t)  are determined by the 

given function  p(t)  and because (2.5) is true, (3.7) is true, too. 

 

Besides, if  1m ,  then the operator (3.6), acting from    0
1 ,, tCp    into the same space, is 

a contraction operator, and therefore (3.3) will have a unique solution  )(* tum   in the ball  Ur,  to 

which the sequence   )()( tu nm   will converge as  n   for any initial function  rm Utu )()0( . 

 

By using the same method as for  )(ti ,  we are taking a linear combination of the functions  

  ),...,2,1()( mktFk    and, so (3.3) and its solution  )(* tum   can be written as following: 
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where  *
mka   are determined numbers. By the same way  )(* tum   will be a solution of (3.1), for  

),...,2,1(0)( mip i  . 

 

In addition, it is possible to put ),...,2,1(),()( mkttF kk  . We use further the Feier 

interpolation process  ,...)2,1()( mQm   on the interval  ,

)(f   by  ),...2,1(,0)(),()( mkQfQ kmkkm   ,  where    mkmkk 2)12(cos  are 

the Chebyshev nodes, i.e., the  k   are the zeros of the polynomial of degree  m  which differs at 

least from zero in the uniform metric space on   , : 
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Additionally, the interpolation polynomial  )(mQ   has the following form: 
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and  1m   for this. 

 

We will further show that, as  m ,  the approximate solutions  )(* tum   converge in the form 

of    0
1 ,, tCp    to a solution of (2.1). 

 

Thus, we introduce the notation: 
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and: 

                                       ),(),(,,),(),(,,)(),,( *** tuStutFtuStutFtptuuH          (3.21) 
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is valid, where   mm and . 

 

Beyond the above, under the conditions that  ru    and  ru * ,  we can take  ω  to be  2r  

and, therefore, follows that  mm rfr   ),(2 ,  i.e., these numbers are bounded for all  m. 

 

Because of the convergence of the Feier interpolation process [38] in the class of continuous 

functions, for any fixed function  ),(),( * turtu m   and the remainder  ),,( * tuurm   approach zero on  

 ,   as  m . Moreover, the remainder  ),,( * tuurm   also converge uniformly to zero with 

respect to function  u(t)  belonging to the     ** :)( uutuU . 

 

Besides, for fixed  t  in   ,   and  u(t)  in  *
U ,  we split the set of numbers  1, 2,…, m  into 

two groups:  )(uS I   and  )(uS II ,  assigning to  )(uS I   those  k  for which  1 tk   and to  

)(uS II   the remaining ones. Then we have  )()(),,( 21
* tStStuurm  ,  where: 
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Because of the continuity of  ),,( *uutH   on   , : 
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is valid and in this  ε  can be arbitrarily small for small values of  δ1. 
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Additionally, if  )(uSk II ,  then by taking into account the explicit form of  )(tk   and the 

inequalities  22 20   kt   and  12)(  mm
m tT  ,  we have: 
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where  M  is the largest value of  H t u u( , , )*   in the set     Uut  ,, . 

 

Beyond the above, the inequalities (3.24) and (3.25) are valid for all    t   and  
*)( Utu  . Thus,  0mr   as  m . 

 

As  )(* tu   is the unique solution of (2.1) in  rU ,  follows that this equation does not have any 

solutions in the ring    *uu ,  for   0 ,  i.e. there exists an  0),( a   such  that  

),(),,(1  atuSu    for    *uu . 

 

In this ring therefore for any: 

),,(),,(),,(),,(),( 11 tuStuStuSutuSutu mm    is valid, and for sufficiently large  

),(),,(),,(, 1  artuStuSm mm    and hence  0),(),,(  mm ratuSu    for 

large  m.  Thus, follows that the  )(* tum  of (3.3)  cannot be in the ring    *uu   and, 

therefore   ** uum ,  where  ε  is positive and arbitrary, which finally proves  Theorem 3.1. 

 

4. Conclusions 

 

The present research was devoted to a study of new approximation methods for the solution of 

the non-linear singular integro-differential equations, defined in closed-normed spaces, i.e. Banach 

spaces. This was an exposition of the conditions of applicability of the method of collocation to 

those non-linear equations and for the convergence of the method. 

 

Furthermore, a system of Chebyshev functions was used in the collocation approximation 

method for the investigation of the existence of solutions for the system of non-linear equations 

applied for the numerical solution of the non-linear singular integro-differential equations. Closed-

form solutions of such type of non-linear equations are not possible to be determined, because of 

the big complication of their term. Thus, they are approximated only by special numerical methods. 

 

Hence, the collocation approximation methods can be used for the numerical solution of non-

linear singular integro-differential equations defined in general problems of structural analysis, 

fracture mechanics, fluid mechanics, potential flows, aerodynamics, turbomachines, etc. of great 

importance. 
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