# The Leading Technology of the Singular Integral Operators Method (SIOM) for Spillway Flows in Dam Hydraulics

E.G. Ladopoulos Interpaper Research Organization Athens, GR - 106 72, Greece eladopoulos@interpaper.org

#### Abstract

A leading technology is further improved for the solution of the classical open channel hydraulics problem to the determination of the free-surface profile of an unsteady flow over a spillway flow in dams, for power production. Thus, by using the Singular Integral Operators Method (S.I.O.M.) then the above problem can be reduced to the solution of a special numerical method. When a flow rate Q is known, then the velocities and the elevations are computed on the free surface of the spillway flow, for the dams. For the numerical calculation of the singular integral equations are used both constant and linear elements. An application is finally given to the determination of the free-surface profile of a special spillway dam and comparing the numerical results with corresponding results by the Boundary Integral Equation Method (B.I.E.M.).

#### **Key Word and Phrases**

Singular Integral Operators Method (S.I.O.M.), Open Channel Hydraulics, Dam Hydraulics, Spillway, Free-Surface Flows, Unsteady Flows, Potential Flows, Constant & Linear Elements.

## 1. Leading Technology of Open Channel Hydraulics

Unsteady free-surface flows, which belong to a wider field of classical hydraulics and fluid mechanics with special interest for the design of dams, were difficult over the past years to be solved accurately and efficiently, because several design and measurement purposes occurred during their solution. Consequently, the two main reasons of the difficulty for solving such hydraulics problems for dams, is firstly the nonlinear character of the boundary conditions and secondly the fact that the boundary of the free-surface flow is not known from the beginning.

Generally, the spillway problems are usually more difficult to be solved than the normal freesurface open channel hydraulics problems. Some basic parameters of the spillway flows, like the discharge, the free surfaces and the speeds are very important for the design of the hydraulics structures. Over the past years the above mentioned parameters were usually obtained through experiments. Furthermore, the increasing development of computer techniques in hydraulics and fluid mechanics problems over the recent years, made efficient the possibility of obtaining such data by using numerical methods, as well.

As a start R.V. Southwell and G. Vaisey [1] used finite differences for the determination of the free waterfall. Some years later the finite difference method was used with a satisfactory success by J.S. Mc Nown, E.Y. Hsu & C.S. Yih [2] and by J.J. Cassidy [3] for the calculation of the flow over a spillway.

Also, the application of Finite Elements for the study of hydraulics problems was introduced by J.A. Mc Corquodale and C.Y.Li [4] who investigated sluice gate flows. The finite element method was further applied by S.T.K. Chan, B.E. Larock and L.R. Hermann [5] for the solution of the surface fluid flows and M. Ikegawa and K. Washizu [6] for the investigation of a flow over a spillway crest. Besides, the Finite Element Method was further improved by L.T. Isaacs [7], [8] for solving potential flow problems and sluice gate flows. On the other hand, by using Finite Elements B.E. Larock [9] studied spillway flows and H.J. Diersch, A. Schirmer and K.F. Bush [10] several generalized open channel hydraulics problems. Beyond the above, E. Varoglou and W.D.L. Finn [11] and P.L. Betts [12] applied the finite element method for the solution of free surface gravity flows.

Beyond the above, the Boundary Element Method (B.E.M.) was used for the solution of open channel flows hydraulics problems and especially those involved to the determination of a free surface under non-linear boundary conditions, by J.A.Ligget [13] and A.H.-D. Cheng, J.A. Liggett and P.L.-F Liu [14].

The complex variable function theory was also used for the solution of free surface potential flow problems. The above method was applied when the effort of gravity is neglected and the geometry of the solid boundary consists of straight segments. T.S. Strelkoff [15] used a computational method based on the complex variable function theory for the numerical evaluation of the sharp-crested weir flows. By using a corresponding method T.S. Strelkoff and M.S. Moayeri [16] studied the waterfall from a flat channel with horizontal and vertical walls. Besides, Y. Guo et al. [17] proposed a numerical method for the determination of the spillway flow with free drop and initially unknown discharge.

Over the past years, E.G. Ladopoulos [18] - [23] and E.G. Ladopoulos and V.A. Zisis [24], [25] investigated and studied linear and non-linear singular integral equations methods for the solution of fluid mechanics problems. By the present report the above methods will be extended to the solution of potential and unsteady flows problems over spillways. Thus, the Singular Integral Operators Method (S.I.O.M.) [23], [26]-[35] is applied to the determination of the free-surface profile of a spillway in a dam. For the numerical evaluation of the singular integral equations both constant and linear elements are used.

The construction of a dam, although not requiring building consent, will nevertheless require careful consideration concerning design and construction methodology. All dams require at least one working spillway. A flood spillway prevents high stream flows generated by heavy or prolonged downpours overtopping the dam crest causing subsequent erosion of the dam materials that may lead to a breach of the dam. The flood spillway is normally formed around the end of the small dam and extends downstream clear of the dam toe. The flood spillway should be of a size adequate for flood flows expected for the rainfall and catchment size/topography. A smaller service spillway for a dam may also exist and will normally be a culvert/pipe which takes normal flows.

Finally, an application is given to the determination of the free-surface profile of a spillway of a dam by using the Singular Integral Operators Method (S.I.O.M.) and comparing the outprints with corresponding results by the Boundary Integral Equation Method (B.I.E.M.).

#### 2. Leading Technology of Potential Flows for Dam Hydraulics

Consider an homogeneous, incompressible and inviscid fluid, which flows over a spillway. As the flow is irrotational, then for the stream function f, with  $\mathbf{f} = \nabla f$ , one has: [23]

$$\nabla \mathbf{x} \, \mathbf{f} = 0 \tag{2.1}$$

Moreover, because of the conservation of mass for an incompressible fluid, then it is valid:

$$\nabla \bullet \mathbf{f} = 0 \tag{2.2}$$

By combining (2.1) and (2.2.) we obtain the equation of Laplace which is the governing equation in the domain  $\Omega$ :

$$\nabla^2 f = 0 \tag{2.3}$$

The boundary conditions corresponding to the above hydraulics problem are:

a. Essential conditions of the type: f=0 on the lower

boundary and on the spillway wall and 
$$f = Q$$
 on the free surface (2.4)

where Q denotes the flow rate per unit width.

b. Natural conditions of the type as follows:

$$v = \frac{gf}{gn} \tag{2.5}$$

in which v is the velocity and n the unit normal from the free surface.

Beyond the above, on the free surface the dynamic boundary condition is valid:

$$\frac{v^2}{2g} + y = H {2.6}$$

where g is the acceleration of gravity, y the free surface elevation and H the design load. (see: Fig. 1).

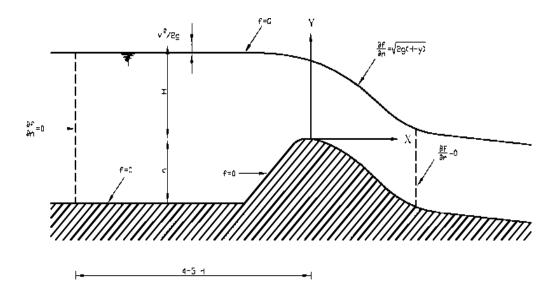


Fig. 1 Free-surface profile of a Spillway.

Consequently, because of (2.6), then the natural condition (2.5) may be written as:

$$\frac{\mathcal{G}}{\mathcal{G}_{n}} = \sqrt{2g(H - y)} \tag{2.7}$$

Furthermore, by the current study of the flow over a spillway, the flow rate Q is known, while the design load H is required as part of the solution.

It is obvious that the spillway flow extend to  $\pm \infty$ , but for the purposes of the numerical solution the inflow and outflow streams are cut at right angles to the primary velocity. Hence, on the cut portions the following boundary condition is valid:

$$\frac{\mathcal{G}}{\mathcal{G}_n} = 0 \tag{2.8}$$

By condition (2.8) follows that there is no velocity normal to the main flow. Although this condition is approximate, it is applied enough far from the spillway crest and thus any small error does not affect the interesting part of the flow.

Hence, when a flow rate Q is known, then the position of the free-surface boundary is assumed and the problem is solved by using the above described boundary conditions. Furthermore, by (2.6) the hydraulic load H is calculated on the free surface. Hence, if H is the same for all free-surface points, then the problem is solved. Otherwise, the assumed free surface is changed, so that the hydraulic load H becomes constant at all points.

#### 3. Leading Tech of Small Dam Hydraulics - Singular Integral Operators Method (S.I.O.M.)

We consider a weighting function  $f^*$ , in order to have continuous first derivatives. So, the function  $f^*$  produces the weighted residual statement as following: [23], [26] - [33]

$$\int_{\Omega} (\nabla^2 f) f^* d\Omega = \int_{\Gamma_2} \left( \frac{gf}{g_n} - \bar{v} \right) f^* d\Gamma - \int_{\Gamma_1} (f - \bar{f}) \frac{gf^*}{g_n} d\Gamma$$
(3.1)

where by (-) are meant average values and  $\Gamma_1$ ,  $\Gamma_2$  are the boundaries, in which the essential and the natural conditions are affected, respectively.

Additionally, by integrating by parts the left hand side of (3.1) one has:

$$-\int_{\Omega} \left( \frac{g_f}{g_{x_k}} \frac{g_f^*}{g_{x_k}} \right) d\Omega = \int_{\Gamma_2} \frac{g_f}{g_n} f^* d\Gamma - \int_{\Gamma_2} \bar{v} f^* d\Gamma - \int_{\Gamma_1} f \frac{g_f^*}{g_n} d\Gamma + \int_{\Gamma_1} \bar{f} \frac{g_f^*}{g_n} d\Gamma$$
(3.2)

A second integration in the left hand side of (3.2) gives:

$$\int_{\Omega} f(\nabla^2 f^*) d\Omega = \int_{\Gamma_2} f \frac{g f^*}{g n} d\Gamma - \int_{\Gamma_2} \bar{v} f^* d\Gamma - \int_{\Gamma_1} \frac{g f}{g n} f^* d\Gamma + \int_{\Gamma_1} \bar{f} \frac{g f^*}{g n} d\Gamma$$
(3.3)

For a solution satisfying the Laplace equation, the governing equation takes the form:

$$\nabla^2 f^* + \Delta_i = 0 \tag{3.4}$$

where  $\Delta_i$  denotes the Dirac delta function

So, the solution of (3.4) is called the fundamental solution and has the property such that:

$$\int_{\Omega} f(\nabla^2 f^* + \Delta_i) d\Omega = \int_{\Omega} f \nabla^2 f^* d\Omega + f_i$$
(3.5)

in which  $f_i$  is the value of the unknown function at the point "i" where a concentrated load is acting.

Then, if (3.4) is satisfied by the fundamental solution, one obtains:

$$\int_{\Omega} f(\nabla^2 f^*) d\Omega = -f_i \tag{3.6}$$

By using further (3.6), then eqn (3.3) can be written as:

$$f_{i} + \int_{\Gamma_{2}} f \frac{g f^{*}}{g_{n}} d\Gamma + \int_{\Gamma_{1}} \overline{f} \frac{g f^{*}}{g_{n}} d\Gamma = \int_{\Gamma_{2}} \overline{v} f^{*} d\Gamma + \int_{\Gamma_{1}} \frac{g f}{g_{n}} f^{*} d\Gamma$$
(3.7)

Beyond the above, by taking the point "i" on the boundary, then the term  $f_i$  in (3.7) has to be multiplied by 1/2 for a smooth boundary. On the contrary, if the boundary is not smooth at the point "i", then the number 1/2 has to be replaced by a constant which can be determined from constant potential considerations.

Hence, (3.7) takes the form:

$$c_i f_i + \int_{\Gamma} f \frac{\mathcal{Y}^*}{\mathcal{Y}^n} d\Gamma = \int_{\Gamma} \frac{\mathcal{Y}}{\mathcal{Y}^n} f^* d\Gamma$$
 (3.8)

where  $\Gamma = \Gamma_1 + \Gamma_2$  under the conditions  $f = \bar{f}$  on  $\Gamma_1$  and  $\frac{\partial f}{\partial n} = v = \bar{v}$  on  $\Gamma_2$ . Also, the constant  $c_i$  can be determined by the relation:

$$c_i = \frac{\Theta}{2\pi} \tag{3.9}$$

in which  $\Theta$  denotes the internal angle of the corner in rad.

#### (a) Constant Elements

In order (3.8) to be numerically calculated by using constant elements, then this equation may be written as:

$$c_i f_i + \sum_{j=1}^n f_j \int_{\Gamma_i} \frac{\mathcal{G}f^*}{\mathcal{G}n} d\Gamma = \sum_{j=1}^n \frac{\mathcal{G}f_j}{\mathcal{G}n} \int_{\Gamma_i} f^* d\Gamma$$
 (3.10)

Beyond the above, (3.10) can be further written as:

$$c_i f_i + \sum_{j=1}^n f_j A_{ij}^* = \sum_{j=1}^n \frac{g_{f_j}}{g_n} B_{ij}$$
 (3.11)

where: 
$$A_{ij} = A_{ij}^*$$
, when  $i \neq j$   
 $A_{ij} = A_{ij}^* + c_i$ , when  $i = j$  (3.12)

Consequently, (3.11) takes the form:

$$\sum_{j=1}^{n} A_{ij} f_{j} = \sum_{j=1}^{n} B_{ij} \frac{\mathcal{G}_{j}}{\mathcal{G}_{n}}$$
 (3.13)

or in matrix form will be written as:

$$\mathbf{A} \mathbf{f} = \mathbf{B} \mathbf{v} \tag{3.14}$$

Moreover, by reordering the above equation so that all the unknowns are on the left hand side, then one has:

$$\mathbf{C} \mathbf{X} = \mathbf{D} \tag{3.15}$$

where **X** is the vector of unknowns f and v.

Thus, if the values of f and v on the whole boundary are known, then f can be calculated at any interior point by the following formula:

$$f_{i} = \sum_{j=1}^{n} \frac{\mathcal{G}_{j}}{\mathcal{G}_{n}} B_{ij} - \sum_{j=1}^{n} f_{j} A^{*}_{ij}$$
(3.16)

### (b) Linear Elements

On the contrary, for the numerical evaluation of (3.8) by using linear elements, then this equation may be written as:

$$c_i f_i + \sum_{j=1}^n \int_{\Gamma_j} f \frac{\mathcal{Y}^*}{\mathcal{Y}^n} d\Gamma = \sum_{j=1}^n \int_{\Gamma_j} \frac{\mathcal{Y}}{\mathcal{Y}^n} f^* d\Gamma$$
 (3.17)

By the current case, in contrary to (3.10), the variables  $f_j$  and  $\frac{9f_j}{9n}$  cannot be taken out of the integral as they vary linearly within the element.

Thus, by using linear elements then (3.17) can be also written as:

$$c_i f_i + \sum_{j=1}^{n} f_j A_{ij}^* = \sum_{j=1}^{n} \frac{\mathcal{G}_j}{\mathcal{G}_n} B_{ij}$$
 (3.18)

By using a corresponding method, as for eqn (3.13), then the above equation takes the form:

$$\sum_{j=1}^{n} A_{ij} f_j = \sum_{j=1}^{n} B_{ij} \frac{\mathcal{Y}_j}{\mathcal{Y}_n}$$
(3.19)

and in matrix form:

$$\mathbf{A} \mathbf{f} = \mathbf{B} \mathbf{v} \tag{3.20}$$

Hence, by using either the constant elements or the linear elements then the velocities  $v = \partial f/\partial n$  are computed on the free surface of the spillway flow.

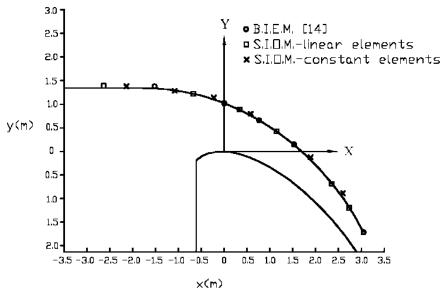
Then, the free surface elevations y, are further computed by the formula:

$$y = \frac{Q}{v} \tag{3.21}$$

and so the free-surface profile is fully determined.

# 4. Application of a Two-dimensional Free-Surface Profile of Spillway in Small Dams Hydraulics

The previous outlined theory will be applied to the determination of the free-surface profile over a spillway of height h = 7.55 m, designed for a flow rate of 3.72 m<sup>3</sup>/sec/m of width. The above problem has been previously solved by A.H.D. Cheng, J.A. Liggett and P.L.F. Lin [14] by using the Boundary Integral Equation Method (B.I.E.M.). Hence, a comparison will be made between the results of the Singular Integral Operators Method (S.I.O.M.), and the Boundary Elements.



**Fig. 2** Surface Profile for a Spillway with  $Q = 3.72 \text{ m}^3/\text{sec/m}$  width

The above problem was solved by using both constant and linear elements. Consequently, as it can be seen from Figure 2 the results of the linear elements by using the S.I.O.M., are in good agreement with the corresponding results by the Boundary Element Method. Beyond the above, there is a small disagreement between the results of the constant elements of the S.I.O.M. and the Boundary Elements. This is basically explained by the fact that the constant elements are not well fitted in the zone of uncertainty of the flow over the spillway.

#### 5. Conclusions

The free-surface profile of the unsteady flow over a spillway dam was determined by using the S.I.O.M. (Singular Integral Operators Method). The above is among the very important problems of classical hydraulics and especially in open channel unsteady flows. Beyond the above, some basic parameters of the unsteady spillway flows, like the discharge, the free surfaces and speeds are too important for the design of the spillways. Over the past years the above hydraulic parameters were obtained through experiments, but with the continuous development of the numerical methods in hydraulics problems, became efficient the possibility of obtaining such parameters through computational methods.

On the contrary, the governing equation for solving potential flow problems is the equation of Laplace. Hence, by using the Laplacean and choosing some proper boundary conditions, then the unsteady flows over a spillway dam are calculated by using a computational method based on the singular integral equations. For the numerical calculation of the singular integral equations were used both constant and linear elements. An application was further given to the determination of the free-surface profile of a special spillway dam and the results were compared with corresponding numerical results by the Boundary Integral Equation Method (B.I.E.M.).

The proposed method by using the Laplacean together with the Singular Integral Operators Method for solving potential problems can be applied in several other hydraulics problems of open channel flows. Thus, in future special attention must be given to the research and application of the integral equation methods to the solution of several important hydraulics problems of open channel flows.

#### References

- 1. Southwell R.V. and Vaisey G., 'Relaxation methods applied to engineering problems: XIII, Fluid motions characterized by free streamlines,' Phil. Trans., Royal Soc. London, Ser. A, 240 (1946), 117 161.
- 2. McNown J. S., Hsu E.-Y. and Yih C.-S., 'Application of the relaxation technique in fluid mechanics', Trans. ASCE, **120** (1955), 650 686.
- 3. Cassidy J. J., 'Irrotational flow over spillways of finite height', J. Engng Mech., ASCE, 91 (1965), 155 173.
- 4. McCorquodale J. A. and Li C. Y., 'Finite element analysis of sluice gate flow', Engng J., 54 (1971), 1 4.
- 5. Chan S. T. K., Larock B. E. and Hermann L. R., 'Free surface ideal fluid flows by finite elements', J. Hydr., ASCE, 99 (1973), 959 974.
- 6. *Ikegawa M. and Washizu K.*, 'Finite element method applied to analysis of flow over a spillway crest', *Int. J. Num. Meth. Engngn*, **6** (1973), 179 189.
- 7. Isaacs L.T., 'A curved triangular finite element for potential flow problems', Int. J. Num. Meth. Engng, 7 (1973), 337 344.
- 8. Isaacs L.T., 'Numerical solution for flow under sluice gates', J. Hydr., ASCE, 103 (1977), 473 481.
- 9. Larock B. E., 'Flow over gated spillway crests', Develop. Mech. Vol. 8, Proc 14th Midwestern Mech. Conf., C. W. Bert, ed., Univ. Oklahoma Press, Norman, Okla., 1975, pp. 437 451.
- 10. Diersch H. J., Schirmer A. and Busch K. F., 'Analysis of flows with initially unknown discharge', J. Hydr., ASCE, 103 (1977), 213 232.
- 11. Varoglu E. and Finn W. D. L., 'Variable domain finite element analysis of free surface gravity flow, Comp. Fluids, 6 (1978), 103-114.

- 12. Betts P. L., 'A variational principle in terms of stream function for free-surface flows and its application to the finite element method', Comp. Fluids, 7 (1979), 145 153.
- 13. Liggett J.A., 'Location of free surface in porous media', J. Hydr., ASCE, 103 (1977), 353 365.
- 14. Cheng A. H.- D., Ligget J. A. and Liu P. L.- F., 'Boundary calculations of sluice and spillway flows', J. Hydr., ASCE, 107 (1981), 1163 1178.
- 15. Strelkoff T. S., 'Solution of highly curvilinear gravity flows', J. Engng, ASCE, 90 (1964), 195 221.
- 16. Strelkoff T. S. and Moayeri M. S., 'Patern of potential flow in a free surface overfall', *J. Hydr.*, *ASCE.*, **96** (1970), 879 901.
- 17. Guo Y., Wen X., Wu C. and Fang D., 'Numerical modelling of spillway flow with free drop and initially unknown discharge', J. Hydr. Research, 36 (1998), 785 801.
- 18. Ladopoulos E.G., 'Finite part singular integro differential equations arising in two dimensional aerodynamics', Arch. Mech., 41 (1989), 925 936.
- 19. Ladopoulos E.G., 'Non-linear singular integral representation for unsteady inviscid flowfields of 2-D airfoils', Mech. Res. Commun., 22 (1995), 25 34.
- 20. Ladopoulos E.G., 'Non-linear singular integral computational analysis for unsteady flow problems', Renew. Energy, 6 (1995), 901 906.
- 21. Ladopoulos E.G., 'Non-linear singular integral representation analysis for inviscid flowfields of unsteady airfoils', Int. J. Non-Lin. Mech., 32 (1997), 377 384.
- 22. Ladopoulos E.G., 'Non-linear multidimensional singular integral equations in 2-dimensional fluid mechanics analysis', Int. J. Non-Lin. Mech., 35 (2000), 701-708.
- 23. Ladopoulos E.G., 'Singular Integral Equations, Linear and Non-Linear Theory and its Applications in Science and Engineering', Springer Verlag, New York, Berlin, 2000.
- 24. Ladopoulos E.G. and Zisis V.A., 'Existence and uniqueness for non-linear singular integral equations used in fluid mechanics', Appl. Math., 42 (1997), 345 367.
- 25. Ladopoulos E.G. and Zisis V.A., 'Non-linear finite-part singular integral equations arising in two-dimensional fluid mechanics', Nonlin. Anal., Th. Meth. Appl., 42 (2000), 277-290.
- 26. Ladopoulos E.G., 'On the numerical evaluation of the singular integral equations used in two and three dimensional plasticity problems', Mech. Res. Commun., 14 (1987), 263 274.
- 27. Ladopoulos E.G., 'Singular integral representation of three dimensional plasticity fracture problem', *Theor. Appl. Fract. Mech.*, 8 (1987), 205 211.
- 28. Ladopoulos E.G., 'On the numerical solution of the multidimensional singular integrals and integral equations used in the theory of linear viscoelasticity', Int. J. Math. Math. Scien., 11 (1988), 561 574.
- 29. Ladopoulos E.G., 'Singular integral operators method for two dimensional plasticity problems', Comp. Struct., 33 (1989), 859 865.
- 30. Ladopoulos E.G., 'Cubature formulas for singular integral approximations used in three dimensional elasticity', Rev. Roum. Sci. Tech., Méc Appl., 34 (1989), 377 389.
- 31. Ladopoulos E.G., 'Singular integral operators method for three dimensional elasto plastic stress analysis', Comp. Struct., 38 (1991), 1 8.
- 32. Ladopoulos E.G., 'Singular integral operators method for two dimensional elasto plastic stress analysis', Forsch. Ingen., 57 (1991), 152 158.
- 33. Ladopoulos E.G., 'Singular integral operators method for anisotropic elastic stress analysis', Comput. Struct., 48 (1993), 965 973.
- 34. Ladopoulos E.G., 'Computational Recipes of Linear & Non-Linear Singular Integral Equations & Relativistic Mechanics in Engineering & Applied Science', Volume I, Nova, New York, 2015.
- 35. Ladopoulos E.G., 'Computational Recipes of Linear & Non-Linear Singular Integral Equations & Relativistic Mechanics in Engineering & Applied Science', Volume II, Nova, New York, 2015.