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Abstract 

For the design of the future aircraft with turbojet engines and speeds in the range of 50,000 km/h, 

and for the future spacecraft of any speed, the modern theory of “Universal Mechanics” is further 

improved and investigated. The modern theory of “Universal Mechanics” consists to the 

combination of the theories of “Relativistic Elasticity” and “Relativistic Thermo-Elasticity”. 

Hence, according to the above theories there is a considerable difference between the absolute 

stress tensor and the stress tensor of the airframe even in the range of speeds of 50,000 km/h. 

Moreover, for bigger speeds of the new generation spacecraft, like c/3, c/2 or 3c/4 (c=speed of 

light), then the difference between the two stress tensors is very much increased. Hence, for the 

future spacecraft with very high speeds, the relative stress tensor will be therefore very much 

different than the absolute stress tensor. Also, for velocities near the speed of light, then the values 

of the relative stress tensor are very much bigger than the corresponding values of the absolute 

stress tensor. The theory of “Relativistic Elasticity” is a combination between the theories of 

"Classical Elasticity" and "Special Relativity" and results in the “Universal Equation of Elasticity”. 

Additionally, the theory of “Relativistic Thermo-Elasticity” is a combination between the theories 

of "Classical Thermo-Elasticity" and "Special Relativity" and results in the “Universal Equation of 

Thermo-Elasticity”. For the future aircraft and spacecraft of very high speeds new generation 

aerodynamics should be used. Thus, the “Universal Equation of Elasticity” and the “Universal 

Equation of Thermo-Elasticity” are parts of the general theory of “Universal Mechanics”.   
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1. New Aspects of Universal Mechanics for Future Aircraft & Spacecraft   

In the near future the big Aeronautical Industries are expected to effect a competitive 

technological advantage in several strategic areas of new and rapidly developing advanced 

technologies. Hence, this considerably big market share includes the design of a future aircraft with 

speeds even in the range of 50,000 km/h. As the design of future turbojet engines makes possible 

the design of such type of large aircraft, then there is a need of elastic stress design and analysis for 

the construction of the total parts of such type of the future and new generation aircraft. 

Beyond the above, the scope by the big Space Agencies is to achieve in the future, an absolute 

spacecraft moving with very high speeds, even approaching the speed of light. So, how far could be 

this future ? According to the current investigation and research such future could be much closer 

than everybody believes. For the future spacecraft the relative stress tensor will be much different 

than the absolute stress tensor and so special solid should be used for the construction of the future 

spacecraft. The suitable choice of the solid which must be used for the construction of the absolute 

spacecraft is under investigation, but such solid will be very much different than the usual 

composite materials. 
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Hence, it will be shown that there is a significant difference between the absolute stress tensor 

and the stress tensor of the airframe even in the range of speeds of 50,000 km/h. In addition, for 

bigger speeds the difference of the two stress tensors will be very much increased. So, for bigger 

velocities like c/3, c/2 or 3c/4 (c=speed of light) the relative stress tensor is very much different 

than the absolute one and for velocities near the speed of light the values of the relative stress 

tensor are much bigger than the corresponding values of the absolute stress tensor. The study of the 

connection between the stress tensors of the absolute frame and the airframe is included in the 

theory proposed by E.G.Ladopoulos [30] - [32] under the term “Relativistic Elasticity” and 

“Relativistic Thermo-Elasticity” and the final formula which results from the above theories is 

called the “Universal Equation of Elasticity” and the “Universal Equation of Thermo-Elasticity”, 

correspondingly. Also, both theories of “Relativistic Elasticity” and “Relativistic Thermo-

Elasticity” are included in a more general theory under the term “Universal Mechanics”.  

Furthermore, E.G.Ladopoulos [1]-[16] and E.G.Ladopoulos et al. [17]-[22] proposed singular 

integral equation methods applied to elasticity, plasticity and fracture mechanics theories. In the 

above mentioned papers the Singular Integral Operators Method (S.I.O.M.) is studied for the 

numerical solution of the multidimensional singular integral equations in which the stress tensor 

analysis of the linear elastic theory is reduced. Also, the theory of linear singular integral equations 

was extended to non-linear singular integral equations, too. [23]-[29]. Thus, the theory of 

“Universal Mechanics” and correspondingly the theories of “Relativistic Elasticity” and 

“Relativistic Thermo-Elasticity” will be applied for the design of the elastic stress analysis of the 

airframes.  

In addition, the classical theory of elastic stress analysis and thermo-elastic stress analysis began 

to be analyzed in the early nineteenth century and was further developed during the twentieth 

century. Over the past years, several important monographs were published on the classical theory 

of elasticity and thermo-elasticity. [33]-[52].  

On the other hand, during the past special attention has been given, by many scientists 

worldwide, on the theoretical aspects of the special theory of relativity. Thus, some classical 

monographs were written, dealing with the theoretical foundations and investigations of the special 

and the general theory of relativity. [53]–[60]. Also, by the current research will be shown that the 

"relative stress tensor is not symmetrical", when, as it is well known, the "absolute stress tensor is 

symmetrical". Such a difference is very important for the design of the future aircraft and 

spacecraft of very high speeds.  

Even if in the late future it will be proved that there exists a higher limit than the speed of light, 

then our sophisticated theory will still be existed, as over the speed of light the mass is becoming 

energy.  

          

2.  New Aspects of Future Aircraft & Spacecraft by Universal Equation of Elasticity  

Consider the state of stress at a point in the stationary frame  S
0
, defined by the following 

symmetrical stress tensor: (Fig.1)  
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Furthermore, consider an infinitesimal face element  df  with a directed normal, defined by a 

unit vector  n, at definite point  p  in the three-space of a Lorenz system. The matter on either side 

of this face element experiences a force which is proportional to  df. 
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Fig. 1 The state of stress  σ ik
0  in the stationary system  S

0
. 

 

Hence, the force is valid as: 

                                                                    fd)()(d nσnσ                                                  (2.3) 

 

The components  σi(n)  of  σ(n)  are linear functions of the components  nk  of  n: 

  

                                                             3,2,1,,)(  kinkiki  n                                                  (2.4) 

 

where  σik  is the elastic stress tensor, also called as the relative stress tensor, in contrast to the space 

part  0
ik   of the total energy-momentum tensor  Tik,  referred as the absolute stress tensor. [53], 

[54} (Fig. 2). 

 

 

 

 

 

Fig. 2  The state of stress σ ik
0  in the stationary system S

0
and σ ik  in the airframe system with velocity  u  

parallel to the x 1 - axis. 

 

 

Moreover, the connection between the absolute and relative stress tensors is defined as: 
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                                                 3,2,1,,0  kiug kiikik                                     (2.5) 

 

in which  gi  are the components of the momentum density  g  and  uk  the components of the 

velocity  u  of the matter. 

 

The connection between  g  and the energy flux  s,  is equal to: 

 

                                                                              2csg                                                             (2.6) 

 

where  c  denotes the speed of light (= 300.000 km/sec). 

 

Beyond the above, the total work done per unit time by elastic forces on the matter inside the 

closed surface  f  can be given by the formula: 

 

                                     3,2,1,,d
)(

dd)(   ki
x

u
funfW

k

iki

f

ikik

f 





unσ              (2.7) 

 

where the integration in the last integral is extended over the interior  υ  of the surface  f. 

 

Thus, the work done on an infinitesimal piece of matter of volume  δυ  is valid as: 
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Besides, (2.8) must be equal to the increase per unit time of the energy inside  δυ: 
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                                               (2.9) 

in which  h  denotes the total energy density, including the elastic energy and  tdd  is the 

substantial time derivative. 

 

Eq. (2.9) is valid as: 
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which finally leads to the relation: 

                                                              0)( 
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So, the total energy flow is valid as: 

 

                                                                       )( σuhus                                                        (2.12) 

 

where )( σu    is a space vector with components  ikik u )( σu . 

 

 

Consequently, the total momentum density can be written as: 
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                                                    (2.13) 

 

in which  2ch   denotes the total mass density, including the mass of the elastic energy. 

 

From (2.5) and (2.13) one obtains: 

 

                                    ikkikiik ugug 0/](([ 2  cuu ikki σ)uσ)u        (2.14) 

 

which shows that the relative stress tensor is not symmetrical, in contrast to the absolute stress 

tensor (2.1) which is symmetrical. 

 

In the stationary frame  S
0
  the velocity  00 u   and so, from (2.5), (2.12) and (2.13) the 

following expressions are obtained: 

                             

                                                         )3,2,1,(00  kikikiikik                                   (2.15) 

 

Furthermore, the mechanical energy-momentum tensor satisfies the following relation: 

 

                                                                       ikik UhUT 0                                                       (2.16) 

 

where  Ui  denotes the four-velocity of the matter, in the Lorentz system and  ),0,0,0(0 icUi  . 

 

Consequently, the following scalar can be formed: 

 

                                             )( 1
00

44
20002 xhTcUTUcUTU kikikiki                                   (2.17) 

 

with  )( 1
0 xh  the invariant rest energy density considered as a scalar function of the coordinates  

(xi) (i = 1,2,3)  in  S.  (Fig. 2) 

 

Also, by applying the tensor: 

 

                                                      2cUU kiikik                                           (2.18) 

 

which satisfies the relations: 

 

                                                                  0 kikiki UU                                               (2.19) 

 

then, the following symmetrical tensor can be formed: 

 

                                                                kimkmiik STS  11                                                   (2.20) 

 

which is orthogonal to  Ui: 

 

                                                                   0 kikiki USSU                                                     (2.21) 

 

 

By combining eqs. (2.16), (2.17) and (2.20) we have: 
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                                                                   20 cUUhTS kiikik                                               (2.22) 

 

Beyond the above, in the stationary system  S0  one obtains: 

 

                                                              0, 0
4

0
4

00  iiikikik SSS                                          (2.23) 

 

Eq. (2.22) may also be written as: 

 

                                                                         ikikik ST                                                        (2.24) 

where: 

 

                                                   kikiik UUcUUh 020                                    (2.25) 

 

is the kinetic energy-momentum tensor for an elastic body and: 

 

                                                                            200 ch                                               (2.26) 

 

is the proper mass density. 

 

We introduce further in every system  S  the quantity: 

 

                                                                 44 UUSS kiikik                                                (2.27) 

 

which, on account of (2.24) and (2.25) is valid as: 

 

                                                                  44 UUTT kiikik                                                (2.28) 

 

From (2.1) and (2.2) the three-tensor: 

 

                                                                        ikikikS   00  

 

in the stationary system is a real symmetrical matrix. The corresponding normalized eigenvectors  
)(0 jh  satisfy the orthonormality relations: 

 

                                                                       jej   0)(0)( hh                                                 (2.29a) 

and: 
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The eigenvalues  
0
)( jp ,  the principal stresses, are the three roots of the following algebraic 

equation, where  λ  is the unknown: 

 

                                                              000  ikikikikS                                 (2.30) 

 

The matrix  0
ikS   can be further written in terms of the eigenvalues and eigenvectors as: 
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Then, from eqs. (2.23) and (2.31) one obtains the following form of the stress four-tensor in  S
o
: 
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Consequently, in any system  S we have: 
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From (2.24), (2.25), (2.27) and (2.33) follow the expressions:  
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By putting: 
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and introducing the notation  ba   for the direct product of the vectors  a  and  b,  then eqn (2.35) 

can be written for the relative stress tensor  σ  as following: 
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In addition, the triad vectors  
)( j

ih   satisfy the tensor relations: 
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with  Δik  given by (2.18). 

 

If the stationary system  S
0
  for every event point is chosen in such a way that the spatial axes in 

S
0
 and in  S  have the same orientation, we obtain: 
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with:                       

                                                             2122 )1(1 cu                                                         (2.41) 

 

From (2.34) and (2.40) with  i = k = 4  follows: 
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In the stationary system, (2.37) reduces to:     
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                                                                 0)(0)(0
)(

0 jj
jp hhσ                                                   (2.43) 

 

So, from (2.42) we have the following transformation law for the energy density: 
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and the mass density: 
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From (2.40) and (2.34) with  k = 4, we obtain the momentum density  g  with the components  

icTg ii 4 : 
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 kiki u00 )( uσ  

 

Furthermore, from (2.40) and (2.35) one obtains the relative stress tensor: 
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In the special case  u = (u,0,0),  where the notation of the matter at the point considered is 

parallel to the x1-axis (see Figs.1 and 2), the transformation equations (2.44), (2.46) and (2.47) 

reduce to: 
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and the relative stress tensor gives the Universal Equation of Elasticity: 
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in which  γ  is given by (2.41). Finally, as it could be easily seen the relative stress tensor is not 

symmetrical, in contrast to the absolute stress tensor which is symmetrical. 

 

 

3.  New Aspects of the Future Aircraft & Spacecraft by Universal Equation of Thermo-

Elasticity  

In the previous sections the system under investigation, which is the elastic body, was regarded 

as a purely mechanical system. However, all macroscopic systems are in reality thermo-dynamical 

systems with properties depending on non-mechanical variables such as the proper temperature T 
o
, 

and so the question which arises is to what kind of thermodynamical processes may be described 

by an energy-momentum tensor. 

 

Consequently, it is clear that all properties in which heat energy is transferred from one part of 

the system to another are excluded, for heat flow in the manner would give rise to a non-vanishing 

energy current in the rest system.  

 

Consider further a general system of continuously distributed ponderable or visible matter, 

inside which invisible heat conduction can take place, while the motion of the visible matter is 

described by the four-velocity  iU .  Then the energy-momentum tensor of the general system can 

be given by the following relation: 

                                      ikikik HMT                                                               (3.1) 

where  ikM   is the mechanical part of the energy-momentum tensor and  ikH   the heat part. 

 

Thus, the mechanical part  ikM   is valid by the following formula:   

 

                                                ikkiik ScUUdM  20                                             (3.2) 

 

and the heat part:    
 

                                                    2cUVVUH kikiik                                                       (3.3) 

 

where the four-vector  iV   satisfies the relation:    

 

                                            ikikjkjiki UdUTUTV 0                                              (3.4) 

 

in which  0d   denote the normalized eigenvectors,  ik   is the tensor given by  (2.18)  and  ikP   the 

potential part of the energy momentum tensor. 
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The four-vector  iV   is orthogonal to  iU :    

                                                             0iiVU                                                         (3.5) 

and so we obtain: 

                                              ciVi uVV ,,                                                        (3.6) 

where  u   denotes the velocity of the matter. 

 

Hence, in the stationary system, (3.6) reduces to:   

 

                                                           0,00 ViV                                                        (3.7) 

    

Furthermore, by replacing (2.18) into (2.20) and using (2.17) and (3.4), then we have 

instead of (2.22): 

 

                                   220 cUVVUcUUdTS kikikiikik                                 (3.8) 

 

So, from (3.8) follows the required relation (3.1), instead of (2.24). 

 

Besides, consider the general system of continuously matter described previously inside which 

invisible heat conduction can take place, while the motion of the matter is described by the four-

velocity  iU   or by the velocity  iu . 

 

Then, for the connection between the energy-momentum tensor  ikT   and the relative stress 

tensor ik  of the general system, the following relation is valid:   

 

 

                                     2cuugT kiikkiik                                              (3.9) 

with:    
 

                                             icUUVVU kkk 444                                                    (3.10) 

 

in which  kV   denotes the four-vector given by (3.4),  ig   the momentum density and  c  the speed 

of light. 

 

The quantity  k   seems to be the most important part of  ik :    

 

                         2
4444 cUUVVUUUHH kkikiikik                                (3.11) 

 

Moreover, k  can be written by the following form by using (2.41) and (3.6):   

 

                                                  0,ξk                                                       (3.12) 

with:    
 

                                                 2, cuVuVξ                                                                 (3.13) 
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In the stationary system,  0ξ   is equal to the heat current density  0V :   

                                                           00 Vξ                                                        (3.14) 

    
By combining (3.10) and (3.11), then we have:   

 

                                                     2cU kiik                                             (3.15) 

   

Thus, by using (2.35), (3.1), (3.2), (3.11) and (3.15), one obtains:   

 

                                 2
44 cUUUTT kiikikikkiik                     (3.16) 

 

which finally reduces to the required formula (3.9). 

 

Beyond the above, consider the general system of continuously matter, inside which invisible 

heat conduction can take place. Then the momentum density  g  of this system is given by the 

Universal Equation of Thermo-Elasticity: 

                                          
 

22

,

cc
m

ξσu
ug                                                      (3.17) 

where  u  denotes the velocity of the matter at the place and time considered,  σ  the relative stress 

tensor,  ξ  is given by (3.13) and  2/cEm   is the total mass density. 

 

From (3.9), we obtain for the energy current density:   

 

                                                   kikikk uEuD                                            (3.18) 

which can be further written as:   
 

                                                                        ξσuuD  ,E                                                   (3.19) 

  

So, from (3.19) by using the formula of the momentum density  g:   

 

                                                       2cDg                                                        (3.20) 

 

we have the required relation (3.17) which is a generalization, for a general system with heat 

conduction. 

 

 

4.  New Aspects of Universal Mechanics by Elastic Stress Analysis  

Consider the stationary frame of Fig. 1 with  Γ1  the portion of the boundary of the body on 

which displacements are presented,  Γ2  the surface of the body on which the force tractions are 

employed and  Γ  the total surface of the body equal to  Γ1+Γ2. 

 

Moreover, for the principal of virtual displacements, for linear elastic problems then the 

following formula is valid:  

 

                                     




2

d)(d)( 0
, kkkkkjjk uppub                                     (4.1) 
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in which  uk  are the virtual displacements, satisfying the homogeneous boundary conditions  

0ku   on  Γ1, bk  the body forces (Fig. 1) and  pk  the surface tractions at the point  k  of the body. 

(Fig. 3) 

 

 

Fig. 3 The stationary system  S
0

. 

 

 

Eqn (4.1) can be further written as following if  uk  do not satisfy the previous conditions on  Γ1: 

 

                               




12

d)(d)(d)( 0
, kkkkkkkkjjk puuuppub                    (4.2) 

 

where  0
jkjk np    are the surface tractions corresponding to the  uk  system. 

 

Then, by integrating (4.2) follows: 

 

 

                      




112

d)(dddd 0
kkkkkkkjkjkkk puuupupub         (4.3) 

 

in which jk   are the strains. 

 

By a second integration then (4.3) reduces to: 

  

                                        













2112

dddd

dd 0
,

kkkkkkkk

kjjkkk

pupuupup

uub 

                     (4.4) 

 

Furthermore, a fundamental solution should be found, satisfying the equilibrium equations, of 

the following type: 

 

                                                              00
,  i

ljjk                                                             (4.5) 

 

where  i
l   denotes the Dirac delta function which represents a unit load at  i  in the  l  direction. 
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The fundamental solution for a three-dimensional isotropic body is: [31] 
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in which  G  is the shear modulus,  v  Poisson‟s ratio,  n  the normal to the surface of the body,  lk   

Kronecker‟s delta,  r  the distance from the point of application of the load to the point under 

consideration and  nj  the direction cosines (Fig.3). 

 
The displacements at a point are given by the relation: 

 

  

                                                          


 ddd bupuupui                                  (4.7) 

 

Hence, (4.7) takes the following form for the  “l”  component: 

 

                                                      


 ddd lkkklkklk
i
l ubuppuu                              (4.8) 

 

By differentiating  u  at the internal points, one obtains the stress-tensor for an isotropic 

medium: 
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Additionally, after carrying out the differentiation we have: 
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Eq. (4.10) can be further written as follows: 

 

               

                                                  


 ddd0
kkijkkijkkijij bDuSpD                           (4.11) 

 

where the third order tensor components  Dkij  and  Skij  are: 
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with:  
i

i
x

r
r




,  

 

Finally, because of eqs (2.49) and (4.11) by considering the moving system  S  of Fig. 2, then 

the stress-tensor reduces to the following form: 

 

    0
1111    

      0
1212    

     0
1313    

       
0
2121

1



   

                                                                       0
2222                                                         (4.14) 

        0
2323    

          
0
3131

1



   

        0
3232    

         0
3333    

where  
0
ij   are given by. (4.11) to (4.13). 

 

Table 1 shows the values of  γ  as given by (2.41) for some arbitrary values of the velocity  u  of 

the moving aerospace structure: 

 

Table 1 

Velocity  u   1 1 2 2u c  Velocity  u   1 1 2 2u c  

 50,000 km/h 1.000000001    0.800c    1.666666667 

100,000 km/h 1.000000004    0.900c    2.294157339 

200,000 km/h 1.000000017    0.950c    3.202563076 

500,000 km/h 1.000000107    0.990c    7.088812050 

10Ε+06  km/h 1.000000429    0.999c    22.36627204 

10Ε+07  km/h 1.000042870     0.9999c     70.71244596 

10Ε+08  km/h 1.004314456     0.99999c     223.6073568 

2x10Ε+8 km/h 1.017600788     0.999999c     707.1067812 

         c/3 1.060660172     0.9999999c     2236.067978 

         c/2 1.154700538     0.99999999c     7071.067812 

        2c/3 1.341640786     0.999999999c     22360.67978 

        3c/4 1.511857892 c      

 

Thus, from Table 1 follows that for small velocities 50,000 km/h  to  200,000 km/h, the absolute 

and the relative stress tensor are nearly the same. Moreover, for bigger velocities like  c/3, c/2  or  

3c/4  (c = speed of light), the variable γ takes values more than the unit and thus, relative stress 
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tensor is very different from the absolute one. Besides, for values of the velocity for the moving 

structure near the speed of light, the variable  γ  takes bigger values, while when the velocity is 

equal to the speed of light, then  γ  tends to the infinity. 

Thus, the Singular Integral Operators Method (S.I.O.M.) as was proposed by E.G.Ladopoulos 

[4], [8], [9], [11], [12], [13], [15] and E.G.Ladopoulos et al. [22] will be used for the numerical 

calculation of the stress tensor (3.11), for every specific case.  

 

5. Conclusions 

By the current research in the area of aerospace and aeronautical technologies the theory of 

“Universal Mechanics” has been further investigated and applied for the design of the aircraft with 

speeds in the range of 50,000 km/h. Such a design and construction of the future aircraft will be 

applied to an increased market share of big Aeronautical Industries. Also, “Universal Mechanics”  

has been applied for the design of the absolute spacecraft moving with very high speeds, even 

approaching the speed of light, as the plan of the big Space Agencies is to achieve such spacecraft 

in the future. The future investigation concerns to the determination of the proper composite  

materials or any other kind of materials for the construction of the future spacecraft, as usual 

composite solids are not suitable for such constructions. 

The theory of “Universal Mechanics” and correspondingly the “Universal Equation of 

Elasticity” and the “Universal Equation of Thermo-Elasticity” show that there is a considerable 

difference between the absolute stress tensor of the airframe even in the range of speeds of 50,000 

km/h. For bigger speeds the difference between the two stress tensors is very much increased. 

“Universal Mechanics” results as a combination of the theories of "Relativistic Elasticity" and 

"Relativistic Thermo-Elasticity".   

Hence, for the structural design of the future aircraft and spacecraft will be used the stress tensor 

of the airframe in combination to the singular integral equations. Such a stress tensor is reduced to 

the solution of a multidimensional singular integral equation and for its numerical evaluation will 

be used the Singular Integral Operators Method (S.I.O.M.).  
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