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Abstract

For the design of the future aircraft with turbojet engines and speeds in the range of 50,000 km/h,
and for the future spacecraft of any speed, the modern theory of “Universal Mechanics” is further
improved and investigated. The modern theory of “Universal Mechanics” consists to the
combination of the theories of “Relativistic Elasticity” and “Relativistic Thermo-Elasticity”.
Hence, according to the above theories there is a considerable difference between the absolute
stress tensor and the stress tensor of the airframe even in the range of speeds of 50,000 km/h.
Moreover, for bigger speeds of the new generation spacecraft, like ¢/3, ¢/2 or 3c/4 (c=speed of
light), then the difference between the two stress tensors is very much increased. Hence, for the
future spacecraft with very high speeds, the relative stress tensor will be therefore very much
different than the absolute stress tensor. Also, for velocities near the speed of light, then the values
of the relative stress tensor are very much bigger than the corresponding values of the absolute
stress tensor. The theory of “Relativistic Elasticity” is a combination between the theories of
"Classical Elasticity” and "Special Relativity" and results in the “Universal Equation of Elasticity”.
Additionally, the theory of “Relativistic Thermo-Elasticity” is a combination between the theories
of "Classical Thermo-Elasticity" and "Special Relativity" and results in the “Universal Equation of
Thermo-Elasticity”. For the future aircraft and spacecraft of very high speeds new generation
aerodynamics should be used. Thus, the “Universal Equation of Elasticity” and the “Universal
Equation of Thermo-FElasticity” are parts of the general theory of “Universal Mechanics” .
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1. New Aspects of Universal Mechanics for Future Aircraft & Spacecraft

In the near future the big Aeronautical Industries are expected to effect a competitive
technological advantage in several strategic areas of new and rapidly developing advanced
technologies. Hence, this considerably big market share includes the design of a future aircraft with
speeds even in the range of 50,000 km/h. As the design of future turbojet engines makes possible
the design of such type of large aircraft, then there is a need of elastic stress design and analysis for
the construction of the total parts of such type of the future and new generation aircraft.

Beyond the above, the scope by the big Space Agencies is to achieve in the future, an absolute
spacecraft moving with very high speeds, even approaching the speed of light. So, how far could be
this future ? According to the current investigation and research such future could be much closer
than everybody believes. For the future spacecraft the relative stress tensor will be much different
than the absolute stress tensor and so special solid should be used for the construction of the future
spacecraft. The suitable choice of the solid which must be used for the construction of the absolute
spacecraft is under investigation, but such solid will be very much different than the usual
composite materials.

11



E.G. Ladopoulos

Hence, it will be shown that there is a significant difference between the absolute stress tensor
and the stress tensor of the airframe even in the range of speeds of 50,000 km/h. In addition, for
bigger speeds the difference of the two stress tensors will be very much increased. So, for bigger
velocities like ¢/3, ¢/2 or 3c/4 (c=speed of light) the relative stress tensor is very much different
than the absolute one and for velocities near the speed of light the values of the relative stress
tensor are much bigger than the corresponding values of the absolute stress tensor. The study of the
connection between the stress tensors of the absolute frame and the airframe is included in the
theory proposed by E.G.Ladopoulos [30] - [32] under the term “Relativistic Elasticity” and
“Relativistic Thermo-Elasticity” and the final formula which results from the above theories is
called the “Universal Equation of Elasticity” and the “Universal Equation of Thermo-Elasticity”,
correspondingly. Also, both theories of “Relativistic Elasticity” and “Relativistic Thermo-
Elasticity” are included in a more general theory under the term “Universal Mechanics”.

Furthermore, E.G.Ladopoulos [1]-[16] and E.G.Ladopoulos et al. [17]-[22] proposed singular
integral equation methods applied to elasticity, plasticity and fracture mechanics theories. In the
above mentioned papers the Singular Integral Operators Method (S.1.O.M.) is studied for the
numerical solution of the multidimensional singular integral equations in which the stress tensor
analysis of the linear elastic theory is reduced. Also, the theory of linear singular integral equations
was extended to non-linear singular integral equations, too. [23]-[29]. Thus, the theory of
“Universal Mechanics” and correspondingly the theories of “Relativistic Elasticity” and
“Relativistic Thermo-Elasticity” will be applied for the design of the elastic stress analysis of the
airframes.

In addition, the classical theory of elastic stress analysis and thermo-elastic stress analysis began
to be analyzed in the early nineteenth century and was further developed during the twentieth
century. Over the past years, several important monographs were published on the classical theory
of elasticity and thermo-elasticity. [33]-[52].

On the other hand, during the past special attention has been given, by many scientists
worldwide, on the theoretical aspects of the special theory of relativity. Thus, some classical
monographs were written, dealing with the theoretical foundations and investigations of the special
and the general theory of relativity. [53]-[60]. Also, by the current research will be shown that the
"relative stress tensor is not symmetrical”, when, as it is well known, the "absolute stress tensor is
symmetrical”. Such a difference is very important for the design of the future aircraft and
spacecraft of very high speeds.

Even if in the late future it will be proved that there exists a higher limit than the speed of light,
then our sophisticated theory will still be existed, as over the speed of light the mass is becoming
energy.

2. New Aspects of Future Aircraft & Spacecraft by Universal Equation of Elasticity
Consider the state of stress at a point in the stationary frame S°, defined by the following
symmetrical stress tensor: (Fig.1)

0 0
011 O O3

_ 0 0

O =031 0Oy Op3 (2.1)
0 0
031 O3 O3

. 0__0 0_.0 0 _ 0
where: 031 =013, 031 =073, 03 =0p3 (2.2)

Furthermore, consider an infinitesimal face element df with a directed normal, defined by a
unit vector n, at definite point p in the three-space of a Lorenz system. The matter on either side
of this face element experiences a force which is proportional to df.
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Fig. 1 The state of stress oi({( in the stationary system S 0

Hence, the force is valid as:

do(n) =a(m)d / (2.3)
The components oi(n) of e(n) are linear functions of the components n, of n:
o;(n)=oyn,, i,k=123 (2.9)

where oy is the elastic stress tensor, also called as the relative stress tensor, in contrast to the space

part o;.(,’{ of the total energy-momentum tensor Ty, referred as the absolute stress tensor. [53],

[54} (Fig. 2).

Fig. 2 The state of stress oﬁ( in the stationary system S O and ok inthe airframe system with velocity u
parallel to the x 4 - axis.

Moreover, the connection between the absolute and relative stress tensors is defined as:

13



E.G. Ladopoulos

Oy = Oy +gilty, L,k =123 (2.5)

1/

in which g; are the components of the momentum density g and uy the components of the
velocity u of the matter.

The connection between g and the energy flux s, is equal to:
=s/c? (2.6)
where ¢ denotes the speed of light (= 300.000 km/sec).

Beyond the above, the total work done per unit time by elastic forces on the matter inside the
closed surface f can be given by the formula:

W= jo(n) u)df = _[O'knkudf j‘g(“l %) 4. ik =123 2.7)

where the integration in the last integral is extended over the interior » of the surface f.

Thus, the work done on an infinitesimal piece of matter of volume dv is valid as:

W = 8(“1 zk) v (28)
>

Besides, (2.8) must be equal to the increase per unit time of the energy inside Jv:

%(h&)) =W (2.9)

in which h denotes the total energy density, including the elastic energy and d/dt is the
substantial time derivative.

Eqg. (2.9) is valid as:

%(h&):(%+§—)zukj&)+h&)g—)’z={%+ o ,{)} (2.10)
which finally leads to the relation:
‘Xl SSk (hu, +u,04)=0 (2.11)
So, the total energy flow is valid as:
s =hu+(u-0) (2.12)

where (u-o) isa space vector with components (u-o), =u,0y, .

Consequently, the total momentum density can be written as:
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S u-o
g:—2:w+(—2) (213)
C C

inwhich z2="A4/c* denotes the total mass density, including the mass of the elastic energy.
From (2.5) and (2.13) one obtains:
Oy — O =—gitly + g, =[—(u-6)u; +(u-6)1,]/c* #0 (2.14)

which shows that the relative stress tensor is not symmetrical, in contrast to the absolute stress
tensor (2.1) which is symmetrical.

In the stationary frame S° the velocity #°=0 and so, from (2.5), (2.12) and (2.13) the
following expressions are obtained:

o =0y =0y =0y, (L,k=123) (2.15)
Furthermore, the mechanical energy-momentum tensor satisfies the following relation:
T,U, =—h"U, (2.16)
where U; denotes the four-velocity of the matter, in the Lorentz system and U?” =(0,0,0,ic) .
Consequently, the following scalar can be formed:

UTU, /> =UTRU} [ =T, =h°(x)) (2.17)

with 4°(x,) the invariant rest energy density considered as a scalar function of the coordinates
() (i=1,23) in S. (Fig. 2)

Also, by applying the tensor:
Ay =8 +UU, [ (2.18)
which satisfies the relations:
UA,; =M U, =0 (2.19)
then, the following symmetrical tensor can be formed:

S‘k = Anﬂ

I/

mAmk :Ski (220)

which is orthogonal to U;:

I/

By combining egs. (2.16), (2.17) and (2.20) we have:

15



E.G. Ladopoulos

Su =Ty _hOUiUk/C2

1/

Beyond the above, in the stationary system S, one obtains:
Sy =0y =0y, Sy =543 =0
Eqg. (2.22) may also be written as:

Ty =&y +Sy

/

where:

Sik = ho[]iUk/Cz :/UOUiUk
is the kinetic energy-momentum tensor for an elastic body and:

1O =h/c?
is the proper mass density.
We introduce further in every system S the quantity:
Oy =S —SuuUy /Uy

which, on account of (2.24) and (2.25) is valid as:
oy =Ty —T,U U,

From (2.1) and (2.2) the three-tensor:

0_ 0 _
Sik =0y =0y

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

in the stationary system is a real symmetrical matrix. The corresponding normalized eigenvectors

h°Y) satisfy the orthonormality relations:

R0 . @0 — sie
and:

hR® =6, (j,p=123)

(2.29a)

(2.29b)

The eigenvalues p(oj), the principal stresses, are the three roots of the following algebraic

equation, where 1 is the unknown:

Sk = A8%|=|ok — 28| =0

The matrix Sy can be further written in terms of the eigenvalues and eigenvectors as:

(2.30)
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58 =0 = pl AR @:31)
Then, from egs. (2.23) and (2.31) one obtains the following form of the stress four-tensor in S°:
Si = plyh°h” (2.32)

Consequently, in any system S we have:
Si =P B (2.33)

From (2.24), (2.25), (2.27) and (2.33) follow the expressions:

T = LU, +p(0j)hi(j)hl(tj) (2.34)
Oy =Sy —SuUy /U, :P(Oj)hlgj) (hlgj) +ihz(1j)“k / C) (2.39)

By putting:
B =Y, 1) (2.36)

and introducing the notation aeb for the direct product of the vectors a and b, then egn (2.35)
can be written for the relative stress tensor ¢ as following:

. N0 . ‘
G :p?j)l:h(/) oh" +Eh£1)(h(1) ou):|,] =123 (2.37)

In addition, the triad vectors hi(j) satisfy the tensor relations:

KORP) = 5P (2.38)
hOh) =A,, (2.39)

with 4;, given by (2.18).

If the stationary system S° for every event point is chosen in such a way that the spatial axes in
S%and in S have the same orientation, we obtain:

h) =00 4 {u(u W) (y — 1)}/u2

(2.40)
h‘(lj) =ju-h¥° 7//0
with:
y=1/1-u?/c*)"? (2.41)
From (2.34) and (2.40) with i =k =4 follows:
hi=Ty =~} = ply (whO®)2 2 2 (242

In the stationary system, (2.37) reduces to:
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o = pf) (1" o b0 0.43)
So, from (2.42) we have the following transformation law for the energy density:

K’ +u-6-u/c?

h=
1-u?/c?
(2.44)
0 _ 0
and the mass density:
_#+u-o’ u/ct (2.45)

1-u?/c?

From (2.40) and (2.34) with k = 4, we obtain the momentum density g with the components
g =Ty/ic:

g:u[h0 +u-o’ -u(l—y‘l)/uzjyz/c2 +(c” -u)y/c?

(2.46)
(6° -u); =opu
Furthermore, from (2.40) and (2.35) one obtains the relative stress tensor:
6=06"+ue(c’ -u)y—1)/u*—(c’ -u)eu(y—1)/n?
(2.47)

—(uewu-c’ -w(y-1*/p

In the special case u = (u,0,0), where the notation of the matter at the point considered is
parallel to the x;-axis (see Figs.1 and 2), the transformation equations (2.44), (2.46) and (2.47)
reduce to:

h—(ho +£0'0j 2
= ) N4

0
O
g =V’ (uo = Ju

(2.48)
0
_ Yo
gxz - c2 u
0
g, =75 u
c

and the relative stress tensor gives the Universal Equation of Elasticity:
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o (67 (o}
O, O O3 : 11 Y01 )03

_ _ 0 0 0
G=10; Opn Oy |=|—0p Opn Opn (2.49)
O3 O3 O3 1

in which y is given by (2.41). Finally, as it could be easily seen the relative stress tensor is not
symmetrical, in contrast to the absolute stress tensor which is symmetrical.

3. New Aspects of the Future Aircraft & Spacecraft by Universal Equation of Thermo-

Elasticity

In the previous sections the system under investigation, which is the elastic body, was regarded
as a purely mechanical system. However, all macroscopic systems are in reality thermo-dynamical
systems with properties depending on non-mechanical variables such as the proper temperature T °,
and so the question which arises is to what kind of thermodynamical processes may be described
by an energy-momentum tensor.

Consequently, it is clear that all properties in which heat energy is transferred from one part of
the system to another are excluded, for heat flow in the manner would give rise to a non-vanishing
energy current in the rest system.

Consider further a general system of continuously distributed ponderable or visible matter,

inside which invisible heat conduction can take place, while the motion of the visible matter is
described by the four-velocity U,. Then the energy-momentum tensor of the general system can

be given by the following relation:

T =My +Hy 3.1

1/

where M, isthe mechanical part of the energy-momentum tensor and F/; the heat part.
Thus, the mechanical part M, is valid by the following formula:
M, =d°U, U, [c* +8; (3.2)
and the heat part:
Hy =(U Y, +VU)/e? (3.3)

where the four-vector V, satisfies the relation:

Vi==0;TU; =T, Uy _dOUi (3.4)

1

inwhich d° denote the normalized eigenvectors, A, is the tensor given by (2.18) and P, the
potential part of the energy momentum tensor.
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The four-vector V; is orthogonal to U,:

UV =0 (3.5)

and so we obtain:
V, =(V,i(V,u)/c) (3.6)

where U denotes the velocity of the matter.

Hence, in the stationary system, (3.6) reduces to:
72 =(v°,0) 3.7)

Furthermore, by replacing (2.18) into (2.20) and using (2.17) and (3.4), then we have
instead of (2.22):

Sy =Ty ~d°U,U, ) ~(UY, +VU, )/ & (3.8)
So, from (3.8) follows the required relation (3.1), instead of (2.24).
Besides, consider the general system of continuously matter described previously inside which

invisible heat conduction can take place, while the motion of the matter is described by the four-
velocity U, or by the velocity ;.

1

Then, for the connection between the energy-momentum tensor 7, and the relative stress
tensor o, of the general system, the following relation is valid:

T, =gu, +o, +u, & /c? (3.9
k ik ik i 9k

/

with:
& =U, (v, -7, U, U, )ic (3.10)

in which V. denotes the four-vector given by (3.4), g; the momentum density and ¢ the speed
of light.

The quantity &, seems to be the most important part of &, :
bi = Hy ~Hy Uy /Uy =U, (Vi =V, Uy U, ) (311)
Moreover, &, can be written by the following form by using (2.41) and (3.6):

& =0 (3.12)

with:

g=y[V-u(V,u)/e?| (3.13)
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In the stationary system, &° is equal to the heat current density V°:

g =V (3.14)

By combining (3.10) and (3.11), then we have:

& =U &/’ (3.15)

Thus, by using (2.35), (3.1), (3.2), (3.11) and (3.15), one obtains:

Ty T, Ui JUy =0y + & =03 +U &, /1 (3.16)
which finally reduces to the required formula (3.9).
Beyond the above, consider the general system of continuously matter, inside which invisible

heat conduction can take place. Then the momentum density g of this system is given by the
Universal Equation of Thermo-Elasticity:

g=nmu+-—; (3.17)

we), &
C C

where u denotes the velocity of the matter at the place and time considered, ¢ the relative stress
tensor, & is given by (3.13)and m=E/c? is the total mass density.

From (3.9), we obtain for the energy current density:

which can be further written as:

D=Eu+(u,6)+§ (3.19)

So, from (3.19) by using the formula of the momentum density g:

g=D/c? (3.20)
we have the required relation (3.17) which is a generalization, for a general system with heat

conduction.

4. New Aspects of Universal Mechanics by Elastic Stress Analysis

Consider the stationary frame of Fig. 1 with 773 the portion of the boundary of the body on
which displacements are presented, I, the surface of the body on which the force tractions are
employed and 7" the total surface of the body equal to '+75.

Moreover, for the principal of virtual displacements, for linear elastic problems then the
following formula is valid:

[@; +bou Q= [ (p =, T (4.1)
0 £
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in which uy, are the virtual displacements, satisfying the homogeneous boundary conditions

ur =0 on I, by the body forces (Fig. 1) and py the surface tractions at the point k of the body.
(Fig. 3)

Fig. 3 The stationary system S 0

Eqgn (4.1) can be further written as following if u, do not satisfy the previous conditions on I7:

[@%; +Bow, 4@ = [(p ~ P AT + [ ux ) p, dT (4.2)
Q I n

where p, =n jaj.)k are the surface tractions corresponding to the u, system.

Then, by integrating (4.2) follows:

o) o) L, 0 i

in which & are the strains.
By a second integration then (4.3) reduces to:

jbkuk dQ+J‘G§)k,]uk dQ =
Q Q

_1:[]_7kuk dl“—ljlpkuk dI’ +I;tkpk dF+J.ukpk dr (4.4)

G B}

Furthermore, a fundamental solution should be found, satisfying the equilibrium equations, of
the following type:

O'?k’j +A, =0 (4.5)

where A, denotes the Dirac delta function which represents a unit load at i inthe | direction.
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The fundamental solution for a three-dimensional isotropic body is: [31]

* 1 &
SR N FERRYN
" = T67G0—vyr {(3 el &J

! [ {(1 WA, +3 ‘ﬂ 46)

Pie=" 87(1—v)r? G S,

-0 2”[—, e ﬂ

in which G is the shear modulus, v Poisson’s ratio, n the normal to the surface of the body, A4,

Kronecker’s delta, r the distance from the point of application of the load to the point under
consideration and n; the direction cosines (Fig.3).

The displacements at a point are given by the relation:

:Iude—J.pudF+J.budQ (4.7)
T )

r

Hence, (4.7) takes the following form for the “I” component:

ull = J.ulkpk dF—J.plkuk dr+J.bkulk dQ (48)
r r Q

By differentiating u at the internal points, one obtains the stress-tensor for an isotropic

medium:
0 2GV 19/!1 191/[ 'gu
0 A 4.9
R T W I (TS (4.9)

Additionally, after carrying out the differentiation we have:

0 _ 2Gv ‘9”lk ‘9uik ‘9”.1'k
% _1{1—2VA'7 R I
2Gv u
A H b, dOQ— 4.10
+§[L—2v T %, G{ }" (4.10)

2GV P ik
J.L > A, o, +G[ + u, dI’

Eq. (4.10) can be further written as follows:

= [ Dyp dT =[Sy, dT+ [ Dy, 42 (4.11)
r Q

r

where the third order tensor components Dy; and Sy; are:
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1
D.=——|A1-2V)A,r. +A.r; —A.r, [+3rr .7 4,12
kij 872'(1—\/')7"2 [( )[ ki, j ki’ i ij ,k] it .k] ( )
G I
= 13— |1-2V)A..7, +V(A.v. +A.r.)=5r.r.
kij 472_(1_‘})7,3[ Sn[( v) ik U ik?j Jkr,l) ’:zrzjr,k]
+3V(l’li}’:jl’:k +njr’l-ijk)+(l—2v)(3nk7(i;jj +n;A +n,-Ajk)—(l—4v)nkAijJ (4.13)
. S
with: r, =—
T

i

Finally, because of egs (2.49) and (4.11) by considering the moving system S of Fig. 2, then
the stress-tensor reduces to the following form:

_ 0
071 =0y
.0
Oy, =701,
.0
013 = )03
)
021 =0

Y

Oy =00 (4.14)

_ 0
O3 =03

O3 = O'gz
033 =033
where ag are given by. (4.11) to (4.13).

Table 1 shows the values of y as given by (2.41) for some arbitrary values of the velocity u of
the moving aerospace structure:

Table 1

Velocity u y:ﬂdLﬂW& Velocity u yzﬂﬁLﬂV&
50,000 km/h  1.000000001 0.800c 1.666666667
100,000 km/h  1.000000004 0.900c 2.294157339
200,000 km/hA  1.000000017 0.950c 3.202563076
500,000 km/h  1.000000107 0.990c 7.088812050
10E+06 km/h  1.000000429 0.999¢c 22.36627204
10E+07 km/h  1.000042870 0.9999¢ 70.71244596
10E+08 km/h  1.004314456 0.99999¢c 223.6073568
2x10E+8 km/h  1.017600788 0.999999¢ 707.1067812
c/3  1.060660172 0.9999999¢ 2236.067978
c/2  1.154700538 0.99999999c 7071.067812
2c/3  1.341640786 0.999999999¢c 22360.67978

3c/4  1.511857892 c %

Thus, from Table 1 follows that for small velocities 50,000 km/h to 200,000 km/h, the absolute
and the relative stress tensor are nearly the same. Moreover, for bigger velocities like ¢/3, ¢/2 or
3c/4 (¢ = speed of light), the variable y takes values more than the unit and thus, relative stress
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tensor is very different from the absolute one. Besides, for values of the velocity for the moving
structure near the speed of light, the variable y takes bigger values, while when the velocity is
equal to the speed of light, then y tends to the infinity.

Thus, the Singular Integral Operators Method (S.1.0.M.) as was proposed by E.G.Ladopoulos
[41, 8], [9], [11], [12], [13], [15] and E.G.Ladopoulos et al. [22] will be used for the numerical
calculation of the stress tensor (3.11), for every specific case.

5. Conclusions

By the current research in the area of aerospace and aeronautical technologies the theory of
“Universal Mechanics ” has been further investigated and applied for the design of the aircraft with
speeds in the range of 50,000 km/h. Such a design and construction of the future aircraft will be
applied to an increased market share of big Aeronautical Industries. Also, “Universal Mechanics”
has been applied for the design of the absolute spacecraft moving with very high speeds, even
approaching the speed of light, as the plan of the big Space Agencies is to achieve such spacecraft
in the future. The future investigation concerns to the determination of the proper composite
materials or any other kind of materials for the construction of the future spacecraft, as usual
composite solids are not suitable for such constructions.

The theory of “Universal Mechanics” and correspondingly the “Universal Equation of
Elasticity” and the “Universal Equation of Thermo-Elasticity” show that there is a considerable
difference between the absolute stress tensor of the airframe even in the range of speeds of 50,000
km/h. For bigger speeds the difference between the two stress tensors is very much increased.
“Universal Mechanics” results as a combination of the theories of "Relativistic Elasticity" and
"Relativistic Thermo-Elasticity".

Hence, for the structural design of the future aircraft and spacecraft will be used the stress tensor
of the airframe in combination to the singular integral equations. Such a stress tensor is reduced to
the solution of a multidimensional singular integral equation and for its numerical evaluation will
be used the Singular Integral Operators Method (S.1.0.M.).
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