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Abstract

A groundbreaking method is further investigated in the area of four-dimensional multiphase flows
for the determination of the properties of reservoir materials, when petroleum reserves together
with water are moving through porous media. This multiphase problem seems to be very important
for hydrocarbon reservoir engineering, in the area of porous medium analysis. Consequently, such
petroleum engineering problem is reduced to the solution of a non-linear singular integral
equation, which is numerically evaluated by using the Singular Integral Operators Method
(S.1.O.M.). Through the present investigation the 4-D multiphase flows are proposed, which
incorporates many 3-D multiphase flows over the same reservoir at specified intervals of time. So,
by studying multiple time-lapsed 3-D surveys, or three-dimensional subsurface flows, portrays the
changes in the reservoir over time. Furthermore, several properties are analyzed and investigated
for the porous medium equation of multiphase flows, defined as a Helmholtz differential equation.
Thus, the estimation of the future petroleum production from a reservoir could be determined.
Finally, an application is given for a well testing to be checked when a heterogeneous petroleum
reservoir together with water in a multiphase flow is moving in a porous medium. By using
therefore the S.1.O.M., then the pressure response from the well test conducted in the above
heterogeneous petroleum and water reservoir, is numerically evaluated and investigated.
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1. Introduction

Generally, the study of the movement of petroleum reserves through porous media is one of the
most important problems on oil reservoir engineering. Hence, very often the petroleum reservoir is
mixed with water and by applying a well test analysis, then a history matching process takes place
for the determination of the properties of the reservoir materials. Besides, the movement of oil
reserves through porous media, produces both single-phase and multiphase flows. Thus, of primary
interest is the investigation of the multiphase flows when the petroleum reservoir is mixed with
water. Also, if a well test is conducted, then the well is subjected to a change of the flow rate and
the pressure response can be further measured. Then the estimation of the future oil production
from a reservoir can be determined. For the determination of several petroleum reservoir
parameters, such as permeability, then numerical calculations should be used, as analytical
solutions in most cases are not possible to be derived. During the past years, several variants of the
Boundary Element Method were used for the solution of petroleum engineering problems. As a
start at the end of eight's Lafe and Cheng [1] proposed a BEM for the solution of steady flows in
heterogeneous solids. At the same period Masukawa and Horne [2] and Numbere and Tiab [3]
applied boundary elements for steady state problems of streamline tracking. Moreover, Kikani and
Horne [4] solved transient problems by using a Laplace space boundary element model, for the
analysis of well tests in several arbitrarily shaped reservoirs. Also, Koh and Tiab [5] used boundary
elements to describe the flow around tortuous horizontal wells, for homogeneous, or piecewise
homogeneous reservoirs. Sato and Horne [6], [7] applied further perturbation boundary elements
for the study of heterogeneous reservoirs. ElI Harrouni, Quazar, Wrobel and Cheng [8]
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proposed the use of a transformed form of Darcy's law combined with dual reciprocity boundary
element method to handle heterogeneity. In addition, Onyejekwe [9] applied a Green element
method to isothermal flows with second order reactions. He [10], [11] used further a combined
method of boundary elements together with finite elements for the study of heterogeneous
reservoirs. Beyond the above, Taigbenu and Onyejekwe [12] applied a transient one-dimensional
transport equation by using a mixed Green element method.

During the past years, several non-linear singular integral equation methods were used
successfully by Ladopoulos [13] - [24] for the solution of applied problems of solid mechanics,
elastodynamics, structural analysis, fluid mechanics and aerodynamics. Moreover, Ladopoulos [25]
- [27] proposed a non-linear singular integral equations method in oil reservoir engineering, for the
determination of the properties of the reservoir materials, when oil reserves are moving through
porous solids. Consequently, by the present investigation, the method of non-linear singular
integral equations will be extended in order to determine the properties of the reservoir materials in
multiphase flows, when petroleum reserves mixed with water are moving through porous solids.

Thus, by using the Singular Integral Operators Method (S.1.0.M.), then the pressure response in
multiphase flows from the well test conducted in a heterogeneous reservoir will be computed. Also,
some properties of the porous medium equation, which is a Helmholtz differential equation, are
proposed and investigated. Additionally, basic properties of the fundamental solution will be
analyzed and investigated.

Moreover, 4-D multiphase flows can be taken on a given area multiple times over an extended
period of time. Consequently, through the current research 4-D multiphase flows are proposed,
which incorporates many 3-D flows over the same reservoir at specified intervals of time. Studying
multiple time-lapsed 3-D surveys, or three-dimensional subsurface images, portrays the changes in
the reservoir over time.

Finally, an application is given for a well testing to be investigated when a heterogeneous oil
reservoir together with water in multiphase flow is moving in a porous medium. Then this problem
is solved by using the Singular Integral Operators Method and so the pressure response from the
well test conducted in this heterogeneous oil reservoir, will be computed. This is therefore very
important in petroleum reservoir engineering in order the size of the reservoir to be evaluated.

The proposed petroleum engineering method, as it is a complicated non-linear numerical
method can give results for heterogeneous porous media (which of course are the solids in reality)
and not only for homogeneous solids as are giving the analytical or numerical existing methods.
So, the estimation of the properties and the future petroleum production from a new oil reservoir
could be done exactly, and not estimated as by the existing methods. From the above mentioned
points it can be understood the evidence of the applicability of the new method, as it is based on
non-linear software. Also its novelty, as it is based on the theory of non-linear singular integral
equations.

Hence, the non-linear singular integral equation methods which were used with big success for
the solution of several engineering problems of fluid mechanics, hydraulics, aerodynamics, solid
mechanics, elastodynamics, and structural analysis, are further extended by the present paper for
the solution of petroleum reservoir engineering problems in multiphase flows. In such case the non-
linear singular integral equations are used for the solution of one of the most important and
interesting problems for petroleum reservoir engineers.

2. Groundbreaking Method of 4-D Multiphase Flows of Petroleum Reserves by Well Test
Analysis

Oil well test analysis is a kind of a very important history matching process for the
determination of the properties of reservoir solids. Hence, during the movement of petroleum
reserves through porous media, then both single-phase and multiphase flow occurs. By the current
research the multiphase flows are studied when the petroleum reserves are mixed with water. In
addition, when a petroleum well test is conducted then the well is subjected to a change of its flow
rate and the resulting pressure response is possible to be measured. Also, this pressure is compared
to analytical or numerical models in order to estimate reservoir parameters such as permeability.
Then the estimation of the future petroleum production from the reservoir can be evaluated.
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A petroleum reservoir well test analysis in a multiphase flow is calculated by using the porous
medium equation:

Ve (k,Vp)=0 (2.1)
with: k, :ﬂ[ 2o + A J (2.2)
¢0§0 (pw§w

in which 1 denotes the relative permeability, 1, the permeability of the oil, ¢, the porosity of the
oil, & the viscosity of the oil and A, &y, &, the corresponding values of the water and p the pressure
of the reservoir.

By replacing variables as follows:

u=A""?p (2.3)
then (2.1) can be written as:
Viu+iu=0 (2.4)
with:
V2 1/2
pe V0T 29
t

Thus, egn (2.4) denotes a Helmholtz differential equation.
Furthermore, consider by u’(x,y) the fundamental solution of any point y, because of the source
point x. Then, the fundamental solution can be given by the following relation:
VAU (X,y) + AU (X, y) + 5(X,y)=0 (2.6a)

which can be further written as:

us (X y) + AU (X,y) + (X, y)=0 (2.6h)

So, eqn (2.6) denotes the Helmholtz potential equation governing the fundamental solution.
Consider further by u” the fundamental solution chosen so that to enforce the Helmholtz

equation in terms of the function u, in a weak form. Then the weak form of Helmholtz equation
will be written as following:

J.(Vzu +Au)u"dR =0 (2.7)
0

in the solution domain Q.

In addition, by applying the divergence theorem once in (2.7), one obtains a symmetric weak
form:



E.G. Ladopoulos

Iniu’iu*dS —Iuviu:d!2+ J'/i’uu*d_Q:O (2.8)
0Q Q Q

in which n denotes the outward normal vector of the surface S.
Thus, in the symmetric weak form the function u and the fundamental solution u” are only

required to be first - order differentiable. Furthermore, by applying the divergence theorem twice in
(2.7) one has:

jniu'iu*dS - J.niuu:dS +J.u(uf:i +Au7)dR=0 (2.9)
02 o 0

Consequently, (2.9) is the asymmetric weak form and the fundamental solution u” is required to
be second - order differentiable. On the contrary, u is not required to be differentiable in the
domain Q.

By combining egs (2.6) and (2.9), then one obtains:

U= [y (), (U (x,y)dS — [, ()u(y)u; (x.,y)ds (210)

which can be further written as:

u()=[a(y)u"(xy)ds - [u(y)R"(x,y)ds (211)

where q(y) denotes the potential gradient along the outward normal direction of the boundary
surface:

ou(y)
on

y

ay)= =n, (Y)u,(y) , yeo® (2.12)

and the kernel function:

R (x,y) =LY

y

=n (Yu,(xy) , yeoR (2.13)

By differentiating (2.11) with respect to x, . one obtains the integral equation for potential
gradients u,(x) by the following formula:

ou(x) ou” (X.Y) e R (x,y)
T, 400 s - [uly) T s (2.14)

082 k
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3. Groundbreaking Method of the Basic Properties for 4-D Multiphase Oil Flows
We rewrite the weak form of (2.6) governing the fundamental solution, by the following
relation:

_[[Vzu*(x,y)+/1’u*(x,y)]cd_(2 +¢c=0, xeQ (3.1)

0
in which ¢ denotes a constant, considering as the test function.

Additionally, egn (3.1) can be further written as:

”uji (X,y)+Au" (X, y)]d.Q +1=0, xeQ (3.2)

Moreover, (3.2) takes the form:

jni (Y)u; (x,y)dS + jﬁ’u*(x, Y)dQR+1=0, xe (3.3)

By considering further an arbitrary function u(x) in £ as the test function, then the weak form of
(2.6) may be written as:

j[Vzu*(x,y) + AU (X,y) + 5(x,y)11(x)d.(2 =0, xe (3.4)

and further as:

.[[u;i (X,y) + ﬂ.’u*(x,y)] u(x)d2 +u(x)=0, xe (3.5)

Finally, (3.5) takes the form:
I@* (X, y)u(x)ds +J.l'u*(x, YU(X)dR2+u(x)=0, xe (3.6)
o 0

Also, if x approaches the smooth boundary (X € 0£2), then the first term in (3.6) may be
written as following:

CPV

lim j @ (X, y)u(x)dS = j @ (X, y)u(x)dS — 1u(x) (3.7)
[e10] o 2
X—>0Q2
in the sense of a Cauchy Principal Value (CPV) integral.

For the understanding of the physical meaning of (3.7), egs (3.3) and (3.6) can be written as:
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CPV

J.(D* (X,y)dS + J./l’u*(x,y)dQ +%=0, XxeoQ (3.8)
0Q 0

and:
CPV

_[ @ (X, y)u(x)dS + J./l'u*(x,y)u(x)dQ +u(x)=0, xeoR (3.9)
002 Q
From (3.8) follows that only a half of the source function at point x is applied to the domain ©,
when the point x approaches a smooth boundary, X € 0(2.

Consider further another weak form of egn (2.6) by supposing the vector functions to be the
gradients of an arbitrary function u(y) in £, chosen in such a way that they have constant values:

u.(y)=u,(x), for k=123 (3.10)

Then the weak form of egn (2.6) will be written as:
Hu]’;i (X,y)+A"u" (X, y)]u,k (y)d2+u, (x)=0 (3.11)
o
By applying further the divergence theorem, then egn (3.11) takes the following form:
j @ (%, y)u, (X)dS + j 20" (%, Y)U, (X)d2+u, (x)=0 (3.12)
o0 2

Furthermore, the following property exists:

[, )u; (U, (x,y)dS — [ (Y)u, (U] (x,y)dS

(3.13)
= [u, (Qu, (6, y)dS — [u, ()uy (x,y)dS =0
0 o
By adding eqgs (3.12) and (3.13) then one has:
[ @), (U 06 y)s = [, (y)u, () (x,y)dS
00 00
(3.14)

+ I @ (X,y)u (x)dS + J.ﬂ”u*(x, y)u, (x)d2+u, (x)=0

which takes finally the form:
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[n )u, (U 06 y)dS + [ e RuGIu} (x y)ds

(3.15)
+jzu7xywk@yuz+qdmzo

4. Groundbreaking Method for 4-D Multiphase Flows by Non-linear Singular Integral
Equations

The porous medium equation (2.1) will be also written in another form, in order a singular
integral equation representation to be applicable:

Vip+Vink, eVp=0 (4.1)

In addition, by applying the Green Element Method, then egn (4.1) reduces to the solution of a
non-linear singular integral equation:

—% p(r;) + J‘(pM—In(r—n)%)dSJr

o on
4.2)
J'J' In(r—r,)[~-VIn AeVpH2 =0
where: A= i (4.3)

k,

In order the non-linear singular integral equation (4.2) to be numerically solved, then the
Singular Integral Operators Method (S.1.0.M.) will be used. Hence, the non-linear singular integral
equation (4.2) is approximated by the formula:

ain(r —r)]
(p on -

—%p(rinz{j

i=l | 60

n(r - ri)%jds +[[(=VinAe Vp)dg} =0 (4.4)

where M denotes the total number of elements.

Moreover, we introduce the following functions describing the pressure at any point in an
element, in terms of the nodal pressures:

P Y)=N; (X, y)p; (4.5)

By replacing (4.5) then eqn (4.4) takes the form:
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M

3 (Atp, +Big, -Ci I A4,p,)=0,  i,j,1=1234 (4.6)
i=1
where:
A = IMQJ_ dS -, 9 (4.7)
o on 27
Bi=— j In(r —r,)£2,dS (4.8)
00

ON; N, N, N,
ox ox oy oy

Ci= ” In(r—r,) do (4.9)

5. Groundbreaking Method of Heterogeneous Reservoirs Application for 4-D Petroleum
Multiphase Flows

The previous mentioned theory will be applied to the determination of the water production
history, in a well known problem where the exact Buckley - Leverett solution is valid [28].

Consequently, by using the Singular Integral Operators Method (S.1.0.M.) as described in the
previous paragraphs, then the computation of the water was effected and a comparison was done
with exact Buckley - Leverett solution. According to this problem water is injected into one end of
a one dimensional oil reservoir and fluids are produced from the other end of the reservoir. In this
case the injected water forms a piston - like shock. Thus, Table 1 shows the watercut with respect
to the time.

The computational results of the watercut were compared to the analytical solutions of the same
problem. From Table 1 it can be seen that there is very small difference between the computational
results and the analytical solutions. Finally, same results are shown, in Figure 1 and in three-
dimensional form in Figure 1a.

Table1

Time Watercut (%) Watercut (%)
(days) S.1.O.M. Analytical

0 0 0

10 0 0

20 0 0

30 0 0

40 0 0

50 0 0

51 6 0

52 20 0

53 40 0

54 60 100

55 98 100

56 100 100
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Fig. 1 Multiphase Flow of Qil Reservoir Mixed with Water.
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Fig. 2 3-D Distribution of Multiphase Flow of Oil Reservoir Mixed with Water.

6. Conclusions

A non-linear mathematical method has been further studied as an attempt to determine the
properties of oil reserves materials mixed with water in multiphase flow. Thus, the study of the
movement of petroleum reserves through porous media is very important for petroleum reservoir
engineers. The above problem was reduced to the solution of a non-linear singular integral
equation, which was numerically solved by using the Singular Integral Operators Method
(S.1.0.M)).

Moreover, several important properties of the porous medium equation, which is a Helmholtz
differential equation, were analyzed and investigated. Thus, the fundamental solution of the porous
medium equation was proposed and studied. Besides, some basic properties of the fundamental
solution were further investigated. The new method, as it is a complicated non-linear numerical
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method can give results for heterogeneous porous media (which of course are the solids in reality)
and not only for homogeneous solids as are giving the analytical or numerical existing methods.
Hence, the estimation of the properties and the future petroleum production from a new petroleum
reservoir could be done exactly, and not estimated as by the existing methods.

An application was finally given to the determination of the water production history, in a well
known problem where the exact Buckley - Leverett solution is valid. The above problem was
solved by using the Singular Integral Operators Method and thus the watercut, was computed.
According to this problem water was injected into one end of a one dimensional oil reservoir and
fluids are produced from the other end of the reservoir. In this case the injected water forms a
piston - like shock.

During the last years, non-linear singular integral equation methods have been used successfully
for the solution of several important engineering problems of structural analysis, elastodynamics,
hydraulics, fluid mechanics and aerodynamics. For the numerical evaluation of the non-linear
singular integral equations of the above problems, were used several aspects of the Singular
Integral Operators Method (S.1.0.M.). Thus, by the present study such methods were extended for
the solution of oil reserves problems in multiphase flows of petroleum reservoir engineering.
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