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Abstract 

A groundbreaking method is further investigated in the area of four-dimensional multiphase flows 

for the determination of the properties of reservoir materials, when petroleum reserves together 

with water are moving through porous media. This multiphase problem seems to be very important 

for hydrocarbon reservoir engineering, in the area of porous medium analysis. Consequently, such 

petroleum engineering problem is reduced to the solution of a non-linear singular integral 

equation, which is numerically evaluated by using the Singular Integral Operators Method 

(S.I.O.M.). Through the present investigation the 4-D multiphase flows are proposed, which 

incorporates many 3-D multiphase flows over the same reservoir at specified intervals of time. So, 

by studying multiple time-lapsed 3-D surveys, or three-dimensional subsurface flows, portrays the 

changes in the reservoir over time. Furthermore, several properties are analyzed and investigated 

for the porous medium equation of multiphase flows, defined as a Helmholtz differential equation. 

Thus, the estimation of the future petroleum production from a reservoir could be determined. 

Finally, an application is given for a well testing to be checked when a heterogeneous petroleum 

reservoir together with water in a multiphase flow is moving in a porous medium. By using 

therefore the S.I.O.M., then the pressure response from the well test conducted in the above 

heterogeneous petroleum and water reservoir, is numerically evaluated and investigated.  
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1. Introduction 

Generally, the study of the movement of petroleum reserves through porous media is one of the 

most important problems on oil reservoir engineering. Hence, very often the petroleum reservoir is 

mixed with water and by applying a well test analysis, then a history matching process takes place 

for the determination of the properties of the reservoir materials. Besides, the movement of oil 

reserves through porous media, produces both single-phase and multiphase flows. Thus, of primary 

interest is the investigation of the multiphase flows when the petroleum reservoir is mixed with 

water. Also, if a well test is conducted, then the well is subjected to a change of the flow rate and 

the pressure response can be further measured. Then the estimation of the future oil production 

from a reservoir can be determined. For the determination of several petroleum reservoir 

parameters, such as permeability, then numerical calculations should be used, as analytical 

solutions in most cases are not possible to be derived. During the past years, several variants of the 

Boundary Element Method were used for the solution of petroleum engineering problems. As a 

start at the end of eight's Lafe and Cheng [1] proposed a BEM for the solution of steady flows in 

heterogeneous solids. At the same period Masukawa and Horne [2] and Numbere and Tiab [3] 

applied boundary elements for steady state problems of streamline tracking. Moreover, Kikani and 

Horne [4] solved transient problems by using a Laplace space boundary element model, for the 

analysis of well tests in several arbitrarily shaped reservoirs. Also, Koh and Tiab [5] used boundary 

elements to describe the flow around tortuous horizontal wells, for homogeneous, or piecewise 

homogeneous reservoirs. Sato and Horne [6], [7] applied further perturbation boundary elements 

for the study of heterogeneous reservoirs. El Harrouni, Quazar, Wrobel and Cheng [8]
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proposed the use of a transformed form of Darcy's law combined with dual reciprocity boundary 

element method to handle heterogeneity. In addition, Onyejekwe [9] applied a Green element 

method to isothermal flows with second order reactions. He [10], [11] used further a combined 

method of boundary elements together with finite elements for the study of heterogeneous 

reservoirs. Beyond the above, Taigbenu and Onyejekwe [12] applied a transient one-dimensional 

transport equation by using a mixed Green element method. 

During the past years, several non-linear singular integral equation methods were used 

successfully by Ladopoulos [13] - [24] for the solution of applied problems of solid mechanics, 

elastodynamics, structural analysis, fluid mechanics and aerodynamics. Moreover, Ladopoulos [25] 

- [27] proposed a non-linear singular integral equations method in oil reservoir engineering, for the 

determination of the properties of the reservoir materials, when oil reserves are moving through 

porous solids. Consequently, by the present investigation, the method of non-linear singular 

integral equations will be extended  in order to determine the properties of the reservoir materials in 

multiphase flows, when petroleum reserves mixed with water are moving through porous solids. 

Thus, by using the Singular Integral Operators Method (S.I.O.M.), then the pressure response in 

multiphase flows from the well test conducted in a heterogeneous reservoir will be computed. Also, 

some properties of the porous medium equation, which is a Helmholtz differential equation, are 

proposed and investigated. Additionally, basic properties of the fundamental solution will be 

analyzed and investigated. 

Moreover, 4-D multiphase flows can be taken on a given area multiple times over an extended 

period of time. Consequently, through the current research 4-D multiphase flows are proposed, 

which incorporates many 3-D flows over the same reservoir at specified intervals of time. Studying 

multiple time-lapsed 3-D surveys, or three-dimensional subsurface images, portrays the changes in 

the reservoir over time. 

Finally, an application is given for a well testing to be investigated when a heterogeneous oil 

reservoir together with water in multiphase flow is moving in a porous medium. Then this problem 

is solved by using the Singular Integral Operators Method and so the pressure response from the 

well test conducted in this heterogeneous oil reservoir, will be computed. This is therefore very 

important in petroleum reservoir engineering in order the size of the reservoir to be evaluated. 

The proposed petroleum engineering method, as it is a complicated non-linear numerical 

method can give results for heterogeneous porous media (which of course are the solids in reality) 

and not only for homogeneous solids as are giving the analytical or numerical existing methods. 

So, the estimation of the properties and the future petroleum production from a new oil reservoir 

could be done exactly, and not estimated as by the existing methods. From the above mentioned 

points it can be understood the evidence of the applicability of the new method, as it is based on 

non-linear software. Also its novelty, as it is based on the theory of non-linear singular integral 

equations.  

Hence, the non-linear singular integral equation methods which were used with big success for 

the solution of several engineering problems of fluid mechanics, hydraulics, aerodynamics, solid 

mechanics, elastodynamics, and structural analysis, are further extended by the present paper for 

the solution of petroleum reservoir engineering problems in multiphase flows. In such case the non-

linear singular integral equations are used for the solution of one of the most important and 

interesting problems for petroleum reservoir engineers. 

 
2. Groundbreaking Method of 4-D Multiphase Flows of Petroleum Reserves by Well Test 
Analysis 

Oil well test analysis is a kind of a very important history matching process for the 

determination of the properties of reservoir solids. Hence, during the movement of petroleum 

reserves through porous media, then both single-phase and multiphase flow occurs. By the current 

research the multiphase flows are studied when the petroleum reserves are mixed with water. In 

addition, when a petroleum well test is conducted then the well is subjected to a change of its flow 

rate and the resulting pressure response is possible to be measured. Also, this pressure is compared 

to analytical or numerical models in order to estimate reservoir parameters such as permeability. 

Then the estimation of the future petroleum production from the reservoir can be evaluated. 
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A petroleum reservoir well test analysis in a multiphase flow is calculated by using the porous 

medium equation: 
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in which  λ  denotes the relative permeability, λo the permeability of the oil, o  the porosity of the 

oil, ξo the viscosity of the oil and λw, w, ξw the corresponding values of the water and  p the pressure 

of the reservoir. 

    

By replacing variables as follows: 
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then (2.1) can be written as: 
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Thus, eqn (2.4) denotes a Helmholtz differential equation. 

 

Furthermore, consider by u
*
(x,y) the fundamental solution of any point  y, because of the source 

point x. Then, the fundamental solution can be given by the following relation:  
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which can be further written as: 
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So, eqn (2.6) denotes the Helmholtz potential equation governing the fundamental solution. 

 

Consider further by u
* 

the fundamental solution chosen so that to enforce the Helmholtz 

equation in terms of the function  u, in a weak form. Then the weak form of Helmholtz equation 

will be written as following: 
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in the solution domain Ω. 

 

In addition, by applying the divergence theorem once in (2.7), one obtains a symmetric weak 

form: 
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in which n denotes the outward normal vector of the surface  S. 

    

Thus, in the symmetric weak form the function  u and the fundamental solution u
*
 are only 

required to be first - order differentiable. Furthermore, by applying the divergence theorem twice in 

(2.7) one has: 
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Consequently, (2.9) is the asymmetric weak form and the fundamental solution  u
*  

is required to 

be second - order differentiable. On the contrary, u is not required to be differentiable in the 

domain Ω.   

By combining eqs (2.6) and (2.9), then one obtains: 
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which can be further written as: 
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where  q(y) denotes the potential gradient along the outward normal direction of the boundary 

surface: 

 

 

                                                     



 yyy

y
y ,)()(

)(
)( ,kk

y

un
n

u
q                               (2.12) 

 

and the kernel function: 
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By differentiating (2.11) with respect to xk , one obtains the integral equation for potential 

gradients  u,k(x) by the following formula: 
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3. Groundbreaking Method of the Basic Properties for 4-D Multiphase Oil Flows 

We rewrite the weak form of (2.6) governing the fundamental solution, by the following 

relation: 
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in which c denotes a constant, considering as the test function. 

 

Additionally, eqn (3.1) can be further written as: 
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Moreover, (3.2) takes the form: 
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By considering further an arbitrary function u(x) in Ω as the test function, then the weak form of 

(2.6) may be written as: 
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Finally, (3.5) takes the form: 
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Also, if x approaches the smooth boundary )( x , then the first term in (3.6) may be 

written as following:    

 

                            lim )(
2

1
)(),()(),( **

xxyxxyx udSudSu

CPV







                       (3.7) 

                                       x   

 

in the sense of a Cauchy Principal Value (CPV) integral. 

 

For the understanding of the physical meaning of (3.7), eqs (3.3) and (3.6) can be written as:  
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From (3.8) follows that only a half of the source function at point x is applied to the domain Ω,  

when the point x approaches a smooth boundary, x . 

 

Consider further another weak form of eqn (2.6) by supposing the vector functions to be the 

gradients of an arbitrary function u(y) in Ω, chosen in such a way that they have constant values:  
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By applying further the divergence theorem, then eqn (3.11) takes the following form:      
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Furthermore, the following property exists: 
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By adding eqs (3.12) and (3.13) then one has: 
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which takes finally the form: 
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4. Groundbreaking Method for 4-D Multiphase Flows by Non-linear Singular Integral 
Equations   

 

The porous medium equation (2.1) will be also written in another form, in order a singular 

integral equation representation to be applicable: 
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In order the non-linear singular integral equation (4.2) to be numerically solved, then the 

Singular Integral Operators Method (S.I.O.M.) will be used. Hence, the non-linear singular integral 

equation (4.2) is approximated by the formula: 
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where  M  denotes the total number of elements. 

 

Moreover, we introduce the following functions describing the pressure at any point in an 

element, in terms of the nodal pressures: 
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By replacing (4.5) then eqn (4.4) takes the form: 
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5. Groundbreaking Method of Heterogeneous Reservoirs Application for 4-D Petroleum 

Multiphase Flows  

 

The previous mentioned theory will be applied to the determination of the water production 

history, in a well known problem where the exact Buckley - Leverett solution is valid [28].  

Consequently, by using the Singular Integral Operators Method (S.I.O.M.) as described in the 

previous paragraphs, then the computation of the water was effected and a comparison was done 

with exact Buckley - Leverett solution. According to this problem water is injected into one end of 

a one dimensional oil reservoir and fluids are produced from the other end of the reservoir. In this 

case the injected water forms a piston - like shock. Thus, Table 1 shows the watercut with respect 

to the time. 

The computational results of the watercut were compared to the analytical solutions of the same 

problem. From Table 1 it can be seen that there is very small difference between the computational 

results and the analytical solutions. Finally, same results are shown, in Figure 1 and in three-

dimensional form in Figure 1a. 

 

 

 

Table 1 

 

Time 

(days) 

Watercut (%) 

S.I.O.M. 

Watercut (%) 

Analytical 

0 0 0 

10 0 0 

20 0 0 

30 0 0 

40 0 0 

50 0 0 

51 6 0 

52 20 0 

53 40 0 

54 60 100 

55 98 100 

56 100 100 
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Fig. 1 Multiphase Flow of Oil Reservoir Mixed with Water. 

 

 

 

 

 

 
 

 
Fig. 2  3-D Distribution of Multiphase Flow of Oil Reservoir Mixed with Water. 

 

6. Conclusions 

A non-linear mathematical method has been further studied as an attempt to determine the 

properties of oil reserves materials mixed with water in multiphase flow. Thus, the study of the 

movement of petroleum reserves through porous media is very important for petroleum reservoir 

engineers. The above problem was reduced to the solution of a non-linear singular integral 

equation, which was numerically solved by using the Singular Integral Operators Method 

(S.I.O.M.). 

Moreover, several important properties of the porous medium equation, which is a Helmholtz 

differential equation, were analyzed and investigated. Thus, the fundamental solution of the porous 

medium equation was proposed and studied. Besides, some basic properties of the fundamental 

solution were further investigated. The new method, as it is a complicated non-linear numerical 
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method can give results for heterogeneous porous media (which of course are the solids in reality) 

and not only for homogeneous solids as are giving the analytical or numerical existing methods. 

Hence, the estimation of the properties and the future petroleum production from a new petroleum 

reservoir could be done exactly, and not estimated as by the existing methods. 

An application was finally given to the determination of the water production history, in a well 

known problem where the exact Buckley - Leverett solution is valid. The above problem was 

solved by using the Singular Integral Operators Method and thus the watercut, was computed. 

According to this problem water was injected into one end of a one dimensional oil reservoir and 

fluids are produced from the other end of the reservoir. In this case the injected water forms a 

piston - like shock. 

During the last years, non-linear singular integral equation methods have been used successfully 

for the solution of several important engineering problems of structural analysis, elastodynamics, 

hydraulics, fluid mechanics and aerodynamics. For the numerical evaluation of the non-linear 

singular integral equations of the above problems, were used several aspects of the Singular 

Integral Operators Method (S.I.O.M.). Thus, by the present study such methods were extended for 

the solution of oil reserves problems in multiphase flows of petroleum reservoir engineering.   
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