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Abstract 
A new method – the method of correction of asymptotic expansions, as it is called, – is suggested 
and applied to cylindrical functions  Jν(x) and Yν(x) of a real order ν and a real argument x for 
constructing formulas which improve significantly the precision of the asymptotic expansions 
whereas the correction itself contains few terms. The method includes a specific interpolation with 
terms decreasing at infinity for an interval adjacent to the initial point a > 0 where the whole 
interval (a,∞) begins; for the remaining part of the interval, the corrected asymptotic expansion 
goes more and more closely to the usual  asymptotic expansion. The obtained formulas include an 
explicit dependence on ν.  
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1. Introduction 

The problem of calculation of cylindrical functions is addressed in large amount of publications. 
Many effective algorithms are known which are based on applying recurrent relationships and 
continues fractions [2,3,7,9]; approximations with Chebyshev polynomials [4] or rational 
approximations [8]. A description of various alternatives and the corresponding bibliography one 
can find in [1, 5, 6, 8, 10, 11].  Among the known methods, rather attractive remain the classical 
methods: application of Taylor’s series for small values of arguments and asymptotic expansions 
for large argument’s values.  Overlapping of the corresponding domains could ensure a possibility 
to perform calculations for all values of arguments. It is important that considering these methods 
for cylindrical functions we obtain formulas with explicit dependence on the order ν of the 
functions (stipulating that values of ν are not large). Note that such a possibility does not exist in 
the case of the above mentioned algorithms which result in calculations performed for specific 
values of ν (most frequently for ν = 0, 1).  Unfortunately, the higher the required precision, the 
more difficult to ensure the overlapping, especially if we remain in the frame of the double 
precision arithmetic inherent in common programming languages. For example the Hankel 
asymptotic expansions lead to an error less than 10–15  only for argument values x ≥ 16 (for order ν 
= 0), however the application of the Taylor series leads to the error of 2×10–11 for x = 16 (using 
double precision arithmetic) because of the loss of accuracy. The suggested correction of 
asymptotic expansions significantly improves the corresponding precision which allows us to apply 
the corrected expansions beginning from sufficiently small values of argument. As a result 
achieving the overlapping of the domains of application Taylor series and corrected asymptotic 
expansions becomes simpler. Emphasize that contrary to previous publications, final formulas 
which are suggested in the present paper (being rather simple and competitive with known methods 
regarding the precision and computational work) include the explicit dependence on the order of 
cylindrical functions for some interval of ν variation which can be widened using well known 
recurrent relationships. Note that auxiliary high-precision computations needed for constructing our 
approximations and their testing can be performed using other known methods. In our study the 
package Wolfram Mathematica has been used.           

 
2. Description of the Method 

Let for a function Φ(x) of the real argument x an asymptotic expansion be known which delivers 
an approximation for x > x1 > 0:
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Here n denotes the maximal accounted power of x in the expansion. Generally the more the 
value x1 is the more n can be taken for achieving minimal errors of approximation (2.1). Consider a 
deviation, φn(x), of the functions Φ(x) from the corresponding asymptotic expansion. An effective 
approximation for φn(x), and thus Φ(x), can be realized as follows. Let us take s points,   x1 < x2 < . . 
.<  xs. Introducing additional parameters, w and λ, we construct the following function Gφ(x) which 
interpolates the deviation φn(x) at the interval [x1, xs] and extrapolates it for x > xs: 
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Here Lj(x) are polynomials of degree s – 1 known from Lagrange interpolation method, they are 
equal to 1 for x = xj (j = 1,2,. . . ,s) and to 0 for other interpolation points. Calculations show that 
the optimum value of λ should be an integer greater than n + s – 1; this leads to a suitable rate of 
decreasing of the function (2.2) for x > xs (faster than the last term in (2.1) decreases). It is 
advisable to choose points x2, x3, . . . , xs using the geometric progression, 
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where h > 0 is an initial step, and q > 1; actually, good results are achieved also in the case of a 
constant step (q = 1). The parameters h, q, λ and w should minimize, wherever possible, the 
maximum of absolute values of   δφ = φn(x) – Gφ(x) at the interval   x ≥ x1, consequently we obtain 
rather good approximation, An(x) + Gφ(x), for the function Φ(x). As is seen from (2.2), the auxiliary 
values φn(xj) (j = 1,…,s)  are needed for constructing the approximation. These values as well the 
values of the parameters close to optimal can be found employing high precision calculations. As 
an illustration consider the gamma function Γ(x). According to Stirling’s formula for ln(Γ(x)): 
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where B2k are the Bernoulli numbers. Rather simple approximation we obtain taking x1 = 3, n = 5 
(m = 3 in (2.4)), s = 2, λ = 8. The value of λ equals the power of x in the next (seventh) term of the 
asymptotic expansion plus s – 1 (degree of Lagrange polynomials). Performing a number of 
calculations for different values h and w we come to the following nearly optimal values h = 0.244, 
w = 0.093644. Using these parameters and two “exact” values of φn(x1) = – 2.37486992 ×10–7 and 
φn(x2) = – 1.398285024 ×10–7 in (2.2) the following representation for the correction Gφ(x) can be 
written: 
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Applying the well known recurrent relationship for gamma function we obtain the following 

approximation in the right complex half plane Re(z) ≥ 0:  
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where u = z + 3. The three terms Stirling’s expansion is modified by including the correction Gφ(u) 
and the denominator in the last term in (2.8) which accounts on the recurrent relationship for going 
till x = Re(z) = 0. At the real axis the errors of the approximation (2.8), (2.7) are less than 1.57×10–

13, which is illustrated by Fig. 1a where error δ of approximation (2.8) is shown as a function of x. 
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Without the correction Gφ(u) in (2.8) the error achieves 2.4×10–7; the so successful improvement of 
the approximation by as low as two term correction  is explained by a suitable form of equation 
(2.2): the chosen parameters in the equation have resulted  actually in two additional interpolation 
points (see Fig 1a). In the whole right complex half-plane the errors are less than 4.75×10–11 (the 
maximum error is achieved at the imaginary axis); this is illustrated in Fig. 1b where |δ| as 
functions of y is shown  for z = ξ + iy (ξ  = 0, 0.1, 0.2,…2). Note that smallness of the function of 
Gφ(u) allows us to consider only 8 significant digits in (2.7) while ensuring the much higher final 
precision in (2.8). Remember that the error for ln(Γ(z)) is very close to the relative error for the 
gamma function itself. 
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Fig. 1 (a,b) Errors of approximation for ln(Γ(x)) for s = 2, x1 = 3 at real axis (a) and in right complex half-
plane (b): z = ξ + iy (ξ  = 0, 0.1, 0.2,…2). 
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Fig. 2 (a,b)  Errors of approximation for ln(Γ(x)) for s = 5, x1 = 5 at real axis (a) and in right complex half-

plane (b): z = ξ + iy (ξ  = 0, 0.1, 0.2,…2). 
 

We present also a high precision approximation for the gamma function taking x1 = 5, s = 5, n = 
9,   λ = 15. Nearly optimal values of remaining parameters are:  w = 0.326, h = 0.17, q = 1.9. Using 
equation (2.2) with these parameters and values φn(xj) (j = 1,…,s) we obtain after transformations 
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The approximation for ln(Γ(z)) in the right complex half plane Re(z) ≥ 0 will be (u = z + 5): 

5 93 7

1 1

1680 1

1 1 1
ln(Γ( ))

12 360 12

2
( ) ( 1/ 2) ln( ) ln

( 1)( 2)( 3

18

)( 4)

8
z

u u u

G u u u u
z z z

u

z

u

z


   

   
   

 
                      (2.10) 

Now errors at the real axis are less than 10–20 (see Fig. 2a) whereas without the correction Gφ(u) 
in (2.10) the error achieves 3.5×10–11. In the whole right complex half-plane errors are less than 
8×10–17   (see Fig . 2b where z = ξ + iy , ξ  = 0, 0.1, 0.2,…2). Approximations (2.8), (2.10) have an 
advantage in simplicity and precision over known corresponding approximations; in addition, one 
can merely drop the correction for large enough values of |z| going to the pure Stirling 
approximation. 
 
3 Correction of Asymptotic Expansions for Bessel, Neumann and Hankel Functions 

As a basis for our considerations we use the following representation [1] of cylindrical functions 
(1) ( )H z , (2) ( )H z , Jν (z),  Yν (z) of order ν 
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For functions P(ν, z), Q(ν, z), the Hankel’s asymptotic expansions are known which can be 
represented in the form [1]: 
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The relationships                                                                                                                                                             
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show that P(ν, z) and Q(ν, z) should be even functions of ν;  knowing them for 0 ≤ ν ≤ 1  one is 
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able, using well known recurrent relationships, to perform easily calculations for other real value of 
ν. Note that for ν = (2k + 1)/2 where k ≤ n is an integer the above asymptotic expansions An(z) give  
exact representations for  P(ν, z), Q(ν, z).  

In the present paper, formulas are constructed using the suggested correction for function Φ(x) = 
P(ν, x) and Φ(x) = Q(ν, x) at an interval x ≥ x1 where x1 is a positive value significantly smaller than 
in the case of direct application of asymptotic expansions (3.3), (3.4). We denote the corresponding 
deviations of the functions P(ν, x), Q(ν, x) from their asymptotic expansions as pn(ν, x) and qm(ν, x): 
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The indexes n, m define the last accounted term in the brackets. Analogously to (2.2) we write 
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Calculations show that the optimum values are: λp = s + n + 1 and λq = s + m + 1 (as for gamma 
function in the previous section). The parameters  h, q (which can be different for Gp, Gq)  and wp, 
wq (which depend on ν) should minimize, wherever possible,  the absolute values of δp = pn(ν, x) – 
Gp(ν, x) and  δq = qm(ν, x) – Gq(ν, x) at the interval   x > x1. In distinction to the case with gamma 
function, we have now the second argument, ν, entering the considered functions, and our objective 
is to build simple approximations containing this additional argument.  

 
3.1 Function Gp(ν, x) for x1 = 7, s = 1, n = 14, λp = 16 

Using only one point, x1, and L1(x) = 1, we determine previously exact values of p14(ν, x1) = 
8.487514×10–8,  – 9.071832×10–8 for ν = 0, 1, respectively. The corresponding optimum values of 
wp we find making a number of calculations; they are 0.069314 and 0.069028 for these values of ν. 
Thus the correction Gp(ν, x) in (3.7) becomes known for ν = 0, 1. An interpolation leads to the 
following equation for wp: 

20.069314 0.000286pw                                                                 (3.9) 

which is suitable also beyond the interval 0 ≤ ν ≤ 1 (see below). Now for determination of the 
function Gp(ν, x) for a value ν only p14(ν, x1) is needed. Taking the values   p14(0, x1),  p14(1, x1),  
p14(2, x1)  we, using notations u = ν2, uj = νj

2, construct the following interpolation with the weight 
function cos(πν)exp(0.06805u) at the interval 0 ≤ ν ≤ 2: 
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Here ν1 = 0, ν2 = 1, ν3 = 2; Lj(u) are the already mentioned Lagrange polynomials relating to 
points uj. Remember that for ν = (2k + 1)/2 (k = 0,1,…) values p14(ν, x) should be zeros; this 
explains the application of the cosine function. The parameter in the exponent function, 0.06805, 
has been selected on basis of a number of calculations for minimization of deviation of function 
(3.10) from the corresponding exact values. After transformations, equations (3.10) can be written 
in the form 

20.06805 2 4
14

9( ,7) cos( ) e (84.87514 0.128329 0. )100034935vp                              (3.11) 

The absolute value of error δp occurred at the interval 0 ≤ ν ≤ 1 when using Gp(ν, x) with 
equations (3.9), (3.11) remains less than 1.75×10–12 which is illustrated by Fig. 3 where the 
corresponding results are represented for values of ν from the interval [0, 1] with step 0.1 (for ν = 
0.5 the error equals zero). The suitable choice of the parameter wp results practically in appearing 
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of two additional interpolation points (see Fig. 3) and  the considered one term correction leads to 
about 5×104 times smaller error compared with the direct application of the corresponding 
asymptotic expansion (see the given above values of the deviation p14(ν, 7) for ν = 0, 1). Note that 
the equations (3.9), (3.11) lead to a rather good approximation at the interval 0 ≤ ν ≤ 3 with     |δp| <  
2×10–12. Considering the function P(ν, z) we obtain: 
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Here equations (3.3) for aj, (3.9) for wp, (3.11) for p14(ν, 7) should be applied. In accordance 
with (3.1), (3.2), (3.5) the function (3.12) is an even function of ν. The constructed approximation 
(3.12) (when applying it for a specific value of ν) is competitive (regarding precision and 
computational work) with other methods (see, e.g., results in [8] for  ν = 0,1 obtained with the 
rational approximation), an advantage of equation (3.12) consists in including the explicit 
dependence on ν. 
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Fig. 3 Errors δp of approximation for deviation pn(ν, x) with n = 14, s = 1, x1 = 7. 

 
3.2 Function Gq(ν, x) for x1 = 7, s = 1, m = 13, λq = 15 

Similarly to the previous case we find exact values of q13(ν, x1) = 8.460892×10–8,  –
9.083417×10–8 for ν = 0, 1, respectively. The corresponding optimum values of wq are 0.069306, 
0.068964. Thus the function Gq(ν, x) in (3.8) has been determined for these values of ν. An 
interpolation of the indicated values of wq leads to the following equation: 

20.069306 0.000342qw                                                               (3.13) 

As above (see (3.10), (3.11)), the three values of q13(ν, x1) for ν = 0, 1, 2  allow us to achieve the 
following sufficiently accurate interpolation with the weight function cos(πν)exp(0.07276u): 
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The absolute value of error δq at the interval 0 ≤ ν ≤ 1 generated when using Gq(ν, x) with 
equations (3.13) and (3.14) remains less than 2.14×10–12 which is illustrated by Fig. 4 where the 
corresponding results are represented for values of ν from 0 to 1 with step 0.1. The equations 
(3.13), (3.14) lead also to the approximation at the interval 0 ≤ ν ≤ 3 with |δq| <  5.3×10–12. 
Considering the function Q(ν, x) itself we obtain: 
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Here equations (3.4), (3.13), (3.14) should be applied. The function (3.15) gives correct results 
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also for negative values of ν. Using equations (3.1), (3.12), (3.15) one can calculate cylindrical 
functions Jν(x) and Yν(x) for x ≥ 7 and  –1 ≤ ν ≤ 1 (or even at the wider interval –3 ≤ ν ≤ 3 with a 
small loss of precision) and further go to other values of ν applying well known recurrent 
relationships. As the calculations show, an error for the functions Jν(x) and Yν(x) is less than 6 ×10–

13 at the interval –1 ≤ ν ≤ 1 and less than 10–12 at the interval –3 ≤ ν ≤ 3. 
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Fig. 4 Errors δq of approximation for deviation qm(ν, x) with m = 13, s = 1, x1 = 7. 
 
3.3 Function Gp(ν, x) for x1 = 7, s = 4, n = 14, λp = 19 

The increase in the number of interpolation points leads to a significantly higher precision. 
Instead of 1.75×10–12 (upper estimation for |δp| for |ν| ≤ 1 in the case x1 = 7, s = 1) we achieve for s 
= 4, an error less than 5.4×10–16. On basis of calculations we chose h = 0.204, q = 1.92 for the all 
considered values of ν, the points x2, x3, x4 are determined according to (3). For two values of ν = 0, 
1 we use required four exact values p14(ν, x1), p14(ν, x2), p14(ν, x3), p14(ν, x4) and further determine 
optimum values of wp = 0.11286, 0.11249. Interpolating we obtain 

20.11286 0.00037pw                                                         (3.16) 

which ensures required precision at interval 0 ≤ ν ≤ 1. Now only four values p14(ν, x1), p14 (ν, x2),  
p14(ν, x3), p14 (ν, x4) are required to construct the approximation Gp(ν, x) for the corresponding value 
of ν. Instead of exact values of p14(ν, xj) (j = 1,…4), the interpolating functions of ν analogous to 
(3.10), (3.11) can be easily found (as above we use 3 points ν = 0, 1, 2)  

20.068003 2 94
14 1( , ) cos( ) e (84.875135496 0.124340995 0.003488 )10375vp x               

(3.17) 
20.067901 2 94

14 2( , ) cos( ) e (55.198071686 0.081393671 0.002261 )10041vp x                

(3.18) 
20.067717 2 94

14 3( , ) cos( )e (24.929366564 0.037261013 0.0010 )10156242vp x             

(3.19) 
20.067394 2 94

14 4( , ) cos( ) e (6.004356231 0.009177469 0.000242 )10757vp x                  

(3.20) 
Although the interpolation at the interval 0 ≤ ν ≤ 2 is applied, a required precision is achieved 

only for the interval 0 ≤ ν ≤ 1. These functions along with function (3.16) allow us to calculate 
Gp(ν, x) directly for an arbitrary ν from the interval 0 ≤ ν ≤ 1 without using exact values p14(ν, xj). 
The absolute value of error δp occurred when using Gp(ν, x) with equations (3.16) – (3.20) remains 
less than 5.4×10–16 which is illustrated by Fig. 5 where the corresponding results are represented for 
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values of ν from 0 to 1 with step 0.1.  
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Fig. 5 Errors δp of approximation for deviation pn(ν, x) with n = 14, s = 4, x1 = 7. 

 
 

The function P(ν, x)  can be written in the form: 
7
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                                                           (3.21a) 
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 j j                                            (3.21b) 

Here equations (3.3), (3.16), (3.17) – (3.20) should be applied. The cubic polynomials Lj(x) have 
the form: 
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1 2

1 2 1 3 1 4 2 1 2 3 2 4

1 2 31 2 4
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L x L x
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 
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 

     

                          (3.22) 

In accordance with (3.5) the function (3.21b) is an even function of ν. For a chosen value of ν 
equation (3.21b) can be reduced to a cubic polynomial divided by (wp + x/7)19, so for ν = 0 we 
have: 

2 3
8

19

13.67793804 2.390833962 1.023945041 0.0513740503
(0

2
10

(0.11286 / 7)
, )p

x x x

x
G x 

  


          

(3.23) 
For ν = 1: 

8
2 3

19

14.4223419 2.520637967 1.086144276 0.054690172
(1, )

87

(0.112 7
1

9 /
0

4 )p

x x x
G x

x
  


 


          

(3.24) 
For ν = 1/3: 

8
2 3

19

6.87934176 1.202459195 0.5153365754 0.025866
(1

06205

(0.112
/ 3, ) 10

8188889 / 7)p

x x

x
x

x
G    


       

(3.25) 
3.4 Function Gq(ν, x) for x1 = 7, s = 4, m = 13, λq = 18 
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The transition from s = 1 to s = 4 in the considered case increases the precision significantly: 
instead of   2.13×10–12 (upper estimation for | δq| for |ν| ≤ 1 in the case x1 = 7, s = 1) errors less than  
3.16×10–16 occur. On basis of calculations we use h = 0.467, q = 1.5. For two values of ν = 0, 1 we 
use required four values q13(ν, x1), q13(ν, x2), q13(ν, x3), q13(ν, x4) and further determine optimum 
values of wq = 0.11318, 0.11270. Interpolating we obtain 

20.11318 0.00048qw                                                               (3.26) 

which ensures required precision at the interval 0 ≤ ν ≤ 1. Now only four values q13(ν, x1), q13(ν, x2), 
q13(ν, x3), q13(ν, x4) are required to construct the approximation Gq(ν, x) for the corresponding value 
of ν. Instead of exact values of q13(ν, xj) (j = 1,…4), the interpolating functions analogous to (3.17) 
–  (3.20) can be easily found: 

20.072642 2 94
13 1( , ) cos( ) e (84.608924305 0.143349092 0.004183 )10468vq x               

(3.27) 
20.072392 2 94

13 2( , ) cos( ) e (34.133194725 0.058835126 0.001677 )10992vq x               

(3.28) 
20.072054 2 94

13 3( , ) cos( ) e (9.620077552 0.016966085 0.00 )047015 10vq x                   

(3.29) 
20.071612 2 94

13 4( , ) cos( ) e (1.722369909 0.003113071 0.000083 )10789vq x                  

(3.30) 
These functions along with function (3.26) allow us to calculate Gq(ν, x) directly for an arbitrary 

ν from the considered interval. The absolute value of error δq occurred when using Gq(ν, x) with 
equations (3.26) and (3.27) – (3.30) remains less than 3.16×10–16 which is illustrated by Fig. 6 
where the corresponding results are represented for values of ν from 0 to 1 with step 0.1. The 
function Q(ν, x)  can be written in the form: 
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Here equations (3.4), (3.22), (3.26), (3.27) – (3.30) should be applied. In accordance with (3.5) 
the function (3.31b) is an even function of ν. For a chosen value of ν equation (3.31b) can be 
reduced to a cubic polynomial divided by (wq + x/7)18, so for ν = 0 we have: 

2 3
8
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10.65458363 1.88832261 0.9073732455 0.0477909094
(0

2
10
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(3.32) 
For ν = 1: 
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(3.33) 
For ν = 1/3: 

2 3
8
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5.359380714 0.9499569637 0.4567984494 0.0240
(1

74334
10

(0.1131266667 / 7
, )

)
/ 3q

x x
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x
x
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

     

(3.34) 
Using equations (3.1), (3.21), (3.31) one can calculate Bessel and Neumann functions for –1 ≤ ν 

≤ 1 and further go to arbitrary values of ν applying well known recurrent relationships. As 
calculations show, an error for the functions Jν(x) and Yν(x) is less than 1.6 ×10–16 at the interval –1 
≤ ν ≤ 1; this precision holds when applying the recurrent relationships for cylindrical functions for  
ν ≤ 6.  
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Fig. 6 Errors δq of approximation for deviation qm(ν, x) with m = 13, s = 4, x1 = 7. 

 
3.5 Function Gp(ν, x) for x1 = 3, s = 1, n = 6, λp = 8 

The approximation for x1 = 3 is less exact than in the case x1 = 7 considered above, however the 
accuracy is still acceptable for many applications. We present equations analogous to equations 
(3.9), (3.11)  

20.15704 0.0027pw                                                               (3.35) 

 
2 24 4 0.14198 4 5

6 6 6( ,3) cos( ) e ((1 ) (0,3) (1,3)) cos( ) e (36.82385 0.01128 )10p p e p            
                                      (3.36) 

where α = 0.14198. Here two interpolation points ν1 = 0, ν2 = 1 are sufficient for approximation  
p6(ν, 3). The absolute value of error δp occurred when using Gp(ν,x) with equations (3.35) and 
(3.36) remains less  than 6.5×10–8 which is illustrated by Fig. 7 where the corresponding results are 
represented for values of ν from 0 to 1 with step 0.1.  
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Fig. 7 Errors δp of approximation for deviation pn(ν, x) for n = 6, s = 1, x1 = 3. 

 
Considering the function P(ν, x) itself we obtain the following approximation: 
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                                        (3.37) 

Here equations (3.3), (3.35), (3.36) should be applied. In accordance with (3.5) the function 
(3.37) is an even function of ν.  

 
3.6 Function Gq(ν, x) for x1 = 3, s = 1, m = 5, λq = 7 

We present equations analogous to equations (3.35), (3.36) 
20.15747 0.0038qw                                                               (3.38) 

20.16182 4 5
5 ( ,3) cos( )e (36.32326 0.01621 )10q                                    (3.39)                          

The absolute value of error δq occurred when using Gq(ν, x) with equations (3.38) and (3.39) 
remains less than 6×10–8 which is illustrated by Fig. 8. For the function Q(ν, x) we obtain the 
following approximation: 
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Here equations (3.4), (3.38), (3.39) should be applied. When determining the functions Jν(x) and 
Yν(x) using (3.1), (3.37), (3.40) error for the interval –1 ≤ ν ≤ 1 is less than 3×10–8. 
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Fig. 8 Errors δq of approximation for deviation qm(ν, x) for m = 5, s = 1, x1 = 3. 
 
4. Conclusions 

The correction of asymptotic expansions suggested in the paper significantly improves the 
precision and as result one can  apply the corrected expansions beginning from significantly 
smaller values of argument than in the case of usual expansions. For cylindrical functions, the 
method allows obtaining simple formulas which include explicit dependence on order’s values. 
Actually the possibility occurs to apply the corrected asymptotic expansions beginning from a 
small enough value x1 of the argument so that for x < x1 the Taylor series can be used. 
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