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Abstract

A new method — the method of correction of asymptotic expansions, as it is called, — is suggested
and applied to cylindrical functions J,(x) and Y,(x) of a real order v and a real argument x for
constructing formulas which improve significantly the precision of the asymptotic expansions
whereas the correction itself contains few terms. The method includes a specific interpolation with
terms decreasing at infinity for an interval adjacent to the initial point a > 0 where the whole
interval (a,%) begins; for the remaining part of the interval, the corrected asymptotic expansion
goes more and more closely to the usual asymptotic expansion. The obtained formulas include an
explicit dependence on v.
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1. Introduction

The problem of calculation of cylindrical functions is addressed in large amount of publications.
Many effective algorithms are known which are based on applying recurrent relationships and
continues fractions [2,3,7,9]; approximations with Chebyshev polynomials [4] or rational
approximations [8]. A description of various alternatives and the corresponding bibliography one
can find in [1, 5, 6, 8, 10, 11]. Among the known methods, rather attractive remain the classical
methods: application of Taylor’s series for small values of arguments and asymptotic expansions
for large argument’s values. Overlapping of the corresponding domains could ensure a possibility
to perform calculations for all values of arguments. It is important that considering these methods
for cylindrical functions we obtain formulas with explicit dependence on the order v of the
functions (stipulating that values of v are not large). Note that such a possibility does not exist in
the case of the above mentioned algorithms which result in calculations performed for specific
values of v (most frequently for v = 0, 1). Unfortunately, the higher the required precision, the
more difficult to ensure the overlapping, especially if we remain in the frame of the double
precision arithmetic inherent in common programming languages. For example the Hankel
asymptotic expansions lead to an error less than 10" only for argument values x > 16 (for order v
= 0), however the application of the Taylor series leads to the error of 2x10™"" for x = 16 (using
double precision arithmetic) because of the loss of accuracy. The suggested correction of
asymptotic expansions significantly improves the corresponding precision which allows us to apply
the corrected expansions beginning from sufficiently small values of argument. As a result
achieving the overlapping of the domains of application Taylor series and corrected asymptotic
expansions becomes simpler. Emphasize that contrary to previous publications, final formulas
which are suggested in the present paper (being rather simple and competitive with known methods
regarding the precision and computational work) include the explicit dependence on the order of
cylindrical functions for some interval of v variation which can be widened using well known
recurrent relationships. Note that auxiliary high-precision computations needed for constructing our
approximations and their testing can be performed using other known methods. In our study the
package Wolfram Mathematica has been used.

2. Description of the Method
Let for a function @(x) of the real argument x an asymptotic expansion be known which delivers
an approximation for x > x; > 0:
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D(x)~ 4 (x)= Z% @.1)
=0

Here n denotes the maximal accounted power of x in the expansion. Generally the more the
value x; is the more # can be taken for achieving minimal errors of approximation (2.1). Consider a
deviation, ¢,(x), of the functions @(x) from the corresponding asymptotic expansion. An effective
approximation for ¢,(x), and thus @(x), can be realized as follows. Let us take s points, x; <x,<..
< X,. Introducing additional parameters, w and A, we construct the following function G,(x) which
interpolates the deviation ¢,(x) at the interval [x;, x,] and extrapolates it for x > x;:

x;/x A
P (x) =D (x)—4,(x) = G, (x) = Z T L;(x)p,(x;) (2.2)
X

Here L;(x) are polynomials of degree s — 1 known from Lagrange interpolation method, they are
equal to 1 for x =x; (j = 1,2,. . . ,s) and to O for other interpolation points. Calculations show that
the optimum value of 4 should be an integer greater than n + s — 1; this leads to a suitable rate of
decreasing of the function (2.2) for x > x, (faster than the last term in (2.1) decreases). It is
advisable to choose points x,, X3, . X, using the geometric progression,

X =x,,+qh (j=2,..9) (2.3)

where 4 > 0 is an initial step, and ¢ > 1; actually, good results are achieved also in the case of a
constant step (¢ = 1). The parameters 4, g, A and w should minimize, wherever possible, the
maximum of absolute values of J, = ¢,(x) — G,(x) at the interval x > x,, consequently we obtain
rather good approximation, 4,(x) + G,(x), for the function @(x). As is seen from (2.2), the auxiliary
values ¢,(x;) (j = 1,...,s) are needed for constructing the approximation. These values as well the
values of the parameters close to optimal can be found employing high precision calculations. As
an illustration consider the gamma function I'(x). According to Stirling’s formula for In(I'(x)):

D(x) = In(T'(x)) + x— (x—=1/2) In(x) ~In (v27 ) ~ 4, , (x) 2.4)

2m 1( ) sz(zk 1) 2k—1 (m 1923"") (25)
where By are the Bernoulli numbers. Rather simple approximation we obtain taking x; =3, n =5
(m=31n (2.4)), s =2, A = 8. The value of 1 equals the power of x in the next (seventh) term of the
asymptotic expansion plus s — 1 (degree of Lagrange polynomials). Performing a number of
calculations for different values 4 and w we come to the following nearly optimal values 4 = 0.244,
w = 0.093644. Using these parameters and two “exact” values of ¢,(x;) = — 2.37486992 x10 " and
0u(x) = — 1.398285024 x10" in (2.2) the following representation for the correction G,(x) can be
written:

p) y)
w+1 X—Xx w+x,/3) x—x
G =— 2 + 2 1 2.6
Or
1077
G,(x)=————(2.1613872+0.89957994x) 2.7
v (w+x/3)

Applying the well known recurrent relationship for gamma function we obtain the following
approximation in the right complex half plane Re(z) > 0:
L -+ 15+G¢(u)—u+(u—1/2)ln(u)+lnL (2.8)
12u 360u” 12u z(z+1)(z+2)
where u = z + 3. The three terms Stirling’s expansion is modified by including the correction G,(u)
and the denominator in the last term in (2.8) which accounts on the recurrent relationship for going
till x = Re(z) = 0. At the real axis the errors of the approximation (2.8), (2.7) are less than 1.57x10"
13 which is illustrated by Fig. 1a where error ¢ of approximation (2.8) is shown as a function of x.

In(I'(2)) ~
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Without the correction G,(u) in (2.8) the error achieves 2.4x1077; the so successful improvement of
the approximation by as low as two term correction is explained by a suitable form of equation
(2.2): the chosen parameters in the equation have resulted actually in two additional interpolation
points (see Fig 1a). In the whole right complex half-plane the errors are less than 4.75x10"! (the
maximum error is achieved at the imaginary axis); this is illustrated in Fig. 1b where |J| as
functions of y is shown forz=¢+1y (¢ =0, 0.1, 0.2,...2). Note that smallness of the function of
G,(u) allows us to consider only 8 significant digits in (2.7) while ensuring the much higher final
precision in (2.8). Remember that the error for In(I'(z)) is very close to the relative error for the
gamma function itself.
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Fig. 1 (a,b) Errors of approximation for In(I'(x)) for s = 2, x; = 3 at real axis (a) and in right complex half-
plane (b):z=¢+iy (¢ =0,0.1,0.2,...2).
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Fig. 2 (a,b) Errors of approximation for In(I'(x)) for s = 5, x; =5 at real axis (a) and in right complex half-
plane (b):z=¢+1iy (€ =0,0.1,0.2,...2).

We present also a high precision approximation for the gamma function taking x; =5, s =5, n=
9, A =15. Nearly optimal values of remaining parameters are: w = 0.326, 1/ =0.17, g = 1.9. Using
equation (2.2) with these parameters and values ¢,(x;) (j = 1,...,s) we obtain after transformations
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-13
Lﬁ (—6.3589538855 +2.5880577262x —5.1677775893x"
(w+x/5) (2.9)

—3.0568754731x —0.62873305545x")
The approximation for In(I'(z)) in the right complex half plane Re(z) > 0 will be (u =z + 5):

1 1 1 1 1
In(I'(2)) = - + - + +
=) 12u 360u’ 121> 1680u’ 1188u’

Jin (2.10)
z(z+1)(z+2)(z+3)(z+4)

Now errors at the real axis are less than 10" (see Fig. 2a) whereas without the correction G,(u)
in (2.10) the error achieves 3.5x107"". In the whole right complex half-plane errors are less than
8x107"" (see Fig.2b where z=¢+iy, & =0, 0.1, 0.2,...2). Approximations (2.8), (2.10) have an
advantage in simplicity and precision over known corresponding approximations; in addition, one
can merely drop the correction for large enough values of |z| going to the pure Stirling
approximation.

G,(x)=

G,(uw)—u+@u—1/2)In(u)+In

3 Correction of Asymptotic Expansions for Bessel, Neumann and Hankel Functions
As a basis for our considerations we use the following representation [1] of cylindrical functions

H" (z),H(2),J.(2), Y, (2) of order v

H"(2) :\/Z(P(v,z)+iQ(v,z))eil (3.1a)

rz
H™(2) :\/Z(P(V,Z)—iQ(V,Z))e”‘ (3.1b)

z
J,(2)= \/% (P(v,z)cos(y)—O(v,z)sin(y)) (3.1¢)
Y, (2)= \/g(P(v,z) sin(y)+Q(v,z)cos(y)) (3.1d)

where

z=z—(%v+%)7r 3.2)

For functions P(v, z), O(v, z), the Hankel’s asymptotic expansions are known which can be
represented in the form [1]:

a, a
P(v,z)~ay +—+—-+
z z

v =m-3/2)))(v* =(n-1/2)%)

a,=lLa, =—-a, n=206.3,..
0 n n-2 4}’[(}’1 _1) ( )
(3.3)
b b, b
Ov,z) = —+—=+—+
z z z
v:i-1/4 v =(m-1/2")v* -=(n-3/2)%)
b=——+—b,=-b,, , (n=35,7,..)
2 4n(n—1)
(3.4)
The relationships
HO(2)=e™H(2),H ) (2)=e ™" H(2) (3.5)

show that P(v, z) and O(v, z) should be even functions of v; knowing them for 0 <v <1 one is
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able, using well known recurrent relationships, to perform easily calculations for other real value of
v. Note that for v = (2k + 1)/2 where k < n is an integer the above asymptotic expansions A4,(z) give
exact representations for P(v, z), O(v, z).

In the present paper, formulas are constructed using the suggested correction for function @(x) =
P(v, x) and &(x) = O(v, x) at an interval x > x; where X, is a positive value significantly smaller than
in the case of direct application of asymptotic expansions (3.3), (3.4). We denote the corresponding
deviations of the functions P(v, x), O(v, x) from their asymptotic expansions as p,(v, x) and g,,(v, x):

+“—j (n=2,4,...)
X

a,

p,(v,x) =P(V,x)—(1+_

b (3.6)
qm(V,X):Q(V,X)—(ﬁ'F—é .. :Zj (m 3 5 )
X X X

The indexes n, m define the last accounted term in the brackets. Analogously to (2.2) we write

A
/ P
Pa(v.2) = G, (v,2) = Z[%] L,()p, (v,x,) (.7)
A
x|
4 (V,X) = G, (v, x) = Z(#] L;(x)q,,(v,x;) (3.8)
X

Calculations show that the optimum values are: 4, =s+n+ 1 and 4, =s +m + 1 (as for gamma
function in the previous section). The parameters 4, g (which can be different for G,, G,) and w,,
w, (which depend on v) should minimize, wherever possible, the absolute values of 6, = p,(v, x) —
G,(v, x) and J, = gu(v, X) — G,4(v, x) at the interval x > x,. In distinction to the case with gamma
function, we have now the second argument, v, entering the considered functions, and our objective
is to build simple approximations containing this additional argument.

3.1 Function G,(v,x) forx; =7,s=1,n=14,4,=16

Using only one point, x;, and L;(x) = 1, we determine previously exact values of p4(v, x1) =
8.487514x10°°, —9.071832x10* for v = 0, 1, respectively. The corresponding optimum values of
w, we find making a number of calculations; they are 0.069314 and 0.069028 for these values of v.
Thus the correction G,(v, x) in (3.7) becomes known for v = 0, 1. An interpolation leads to the
following equation for w:

w, = 0.069314—0.0002861° (3.9

which is suitable also beyond the interval 0 < v < 1 (see below). Now for determination of the
function G,(v, x) for a value v only pi4(v, x;) is needed. Taking the values pi4(0, x1), pia(1, x1),
P14(2, x;) we, using notations u = v?, u; = vjz, construct the following interpolation with the weight
function cos(nv)exp(0.06805u) at the interval 0 <v <2:

3
IR zeo'%sos(”*”’ ) cos(zv)(=1)"" p,, (v, DL, (u) (3.10)
j=l

Here vi = 0, v, = 1, v3 = 2; Li(u) are the already mentioned Lagrange polynomials relating to
points u;,. Remember that for v = 2k + 1)/2 (k = 0,1,...) values p4(v, x) should be zeros; this
explains the application of the cosine function. The parameter in the exponent function, 0.06805,
has been selected on basis of a number of calculations for minimization of deviation of function
(3.10) from the corresponding exact values. After transformations, equations (3.10) can be written

in the form

P (v, 7) = cos(v) "% (84.87514—0.128329v> +0.00349351*)10~° (3.11)

The absolute value of error 6, occurred at the interval 0 < v < 1 when using G,(v, x) with
equations (3.9), (3.11) remains less than 1.75x10'2 which is illustrated by Fig. 3 where the
corresponding results are represented for values of v from the interval [0, 1] with step 0.1 (for v =
0.5 the error equals zero). The suitable choice of the parameter w), results practically in appearing
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of two additional interpolation points (see Fig. 3) and the considered one term correction leads to
about 5x10* times smaller error compared with the direct application of the corresponding
asymptotic expansion (see the given above values of the deviation pi4(v, 7) for v =0, 1). Note that
the equations (3.9), (3.11) lead to a rather good approximation at the interval 0 <v <3 with  |J,| <
2x107'"2. Considering the function P(v, z) we obtain:

16
- 7 a,, Wp +1
P(v,x) 1+;x2k +(w,, +x/7} 2V, 7) (3.12)

Here equations (3.3) for a;, (3.9) for w,, (3.11) for pi4(v, 7) should be applied. In accordance
with (3.1), (3.2), (3.5) the function (3.12) is an even function of v. The constructed approximation
(3.12) (when applying it for a specific value of v) is competitive (regarding precision and
computational work) with other methods (see, e.g., results in [8] for v = 0,1 obtained with the
rational approximation), an advantage of equation (3.12) consists in including the explicit

dependence on v.
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Fig. 3 Errors ¢, of approximation for deviation p,(v, x) withn =14, s =1,x,=7.

3.2 Function G,(v,x) forx;=7,s =1, m=13,4,=15
Similarly to the previous case we find exact values of ¢q;3(v, x;) = 8.460892x10°%, —
9.083417x10* for v = 0, 1, respectively. The corresponding optimum values of w, are 0.069306,
0.068964. Thus the function G4 (v, x) in (3.8) has been determined for these values of v. An
interpolation of the indicated values of w, leads to the following equation:
w, = 0.069306—0.000342y° (3.13)

As above (see (3.10), (3.11)), the three values of g13(v, x;) for v=0, 1, 2 allow us to achieve the
following sufficiently accurate interpolation with the weight function cos(mv)exp(0.07276u):

q,;(v,7) = cos(zv) e 07270’ (84.60892 —0.153331y° +0.0041985v*)10™° (3.14)

The absolute value of error J, at the interval 0 < v < 1 generated when using G,(v, x) with
equations (3.13) and (3.14) remains less than 2.14x10™'2 which is illustrated by Fig. 4 where the
corresponding results are represented for values of v from 0 to 1 with step 0.1. The equations

(3.13), (3.14) lead also to the approximation at the interval 0 < v < 3 with |J,| < 5.3x107"%
Considering the function Q(v, x) itself we obtain:

15
b w +1
Q(V,x)zz 22’/‘(‘11+( ct J q,,(v,7) (3.15)
k=1

X wq+x/7

Here equations (3.4), (3.13), (3.14) should be applied. The function (3.15) gives correct results
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also for negative values of v. Using equations (3.1), (3.12), (3.15) one can calculate cylindrical
functions J,(x) and Y,(x) for x > 7 and —1 <v <1 (or even at the wider interval -3 <v <3 with a
small loss of precision) and further go to other values of v applying well known recurrent
relationships. As the calculations show, an error for the functions J,(x) and Y,(x) is less than 6 x10~
13 at the interval —1 < v <1 and less than 10" at the interval -3 <v < 3.

Fig. 4 Errors J, of approximation for deviation g,,(v, x) withm=13,s=1,x,=7.

3.3 Function G,(v, x) forx,=7,s=4,n=14,1,=19

The increase in the number of interpolation points leads to a significantly higher precision.
Instead of 1.75x10™'* (upper estimation for |0,| for [v| <1 in the case x; = 7, s = 1) we achieve for s
= 4, an error less than 5.4x107'°. On basis of calculations we chose / = 0.204, ¢ = 1.92 for the all
considered values of v, the points x,, x3, x4 are determined according to (3). For two values of v =0,
1 we use required four exact values p4(v, x1), p1a(v, x2), p1a(v, x3), p1a(v, x4) and further determine
optimum values of w, = 0.11286, 0.11249. Interpolating we obtain

w, = 0.11286—0.00037v* (3.16)

which ensures required precision at interval 0 < v < 1. Now only four values p14(v, x1), p14 (v, x2),
DP14(v, x3), p1a (v, x4) are required to construct the approximation G,(v, x) for the corresponding value
of v. Instead of exact values of pi4(v, x;) (j = 1,...4), the interpolating functions of v analogous to
(3.10), (3.11) can be easily found (as above we use 3 points v=20, 1, 2)

P(v,x,) = cos(zv) " (84.875135496 —0.1243409951 +0.0034883751*)10°°
(3.17)

Pu(v,x,) = cos(zv) """ (55.198071686 — 0.081393671v> +0.0022610411*)10™°
(3.18)

21 (v,x,) ~ cos(v) "7 (24.929366564 — 00372610131 +0.00101562421*)107°
(3.19)

2, (v,x,) ~ cos(v) €7 (6.004356231— 0.009177469v* +0.000242757v*)10~°

(3.20)

Although the interpolation at the interval 0 < v < 2 is applied, a required precision is achieved
only for the interval 0 < v < 1. These functions along with function (3.16) allow us to calculate
G,(v, x) directly for an arbitrary v from the interval 0 < v < 1 without using exact values p4(v, x)).
The absolute value of error J, occurred when using G,(v, x) with equations (3.16) — (3.20) remains
less than 5.4x10'® which is illustrated by Fig. 5 where the corresponding results are represented for
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values of v from 0 to 1 with step 0.1.
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Fig. 5 Errors J, of approximation for deviation p,(v, x) with n = 14, s =4, x; = 7.

The function P(v, x) can be written in the form:

7
P(v,x)z1+2%+Gp(v,x) (3.21a)
k=1
4 / 19
w +Xx./X
G,(v,x)=) | —L—| L (x)p,v.x) (3:21b)
T\ w,tx/x

Here equations (3.3), (3.16), (3.17) — (3.20) should be applied. The cubic polynomials L;(x) have
the form:

L(x)= (x—x,)(x—x;)(x - x,) (%)= (x—x)(x—x;)(x—x,)

(2 = x,)(x; —x3)(x; —x,) (2, = x)(xy —x3)(x, —x,) ’ (3.22)
L3(x)= (x_xl)(x_xz)(x_x4) ,L4(x)= (x_xl)(x_xz)(x_xs) ‘
(205 = 2,)(o, —x,)(%; — x,) (g = x)(x, = x,)(x, — x3)

In accordance with (3.5) the function (3.21b) is an even function of v. For a chosen value of v
equation (3.21b) can be reduced to a cubic polynomial divided by (w, + x/7)"*, so for v =0 we
have:

¢ 13.67793804 —2.390833962x +1.023945041x" +0.05137405032x"

G (0,x)=10"
»(0.) (0.11286+x/7)"
(3.23)
Forv=1:
G (Lx)=—10" 14.4223419—2.520637967x +1.086144276x +0.05469017287x°
P (0.11249+x/7)"
(3.24)
Forv=1/3:

0* 6.87934176—1.202459195x +0.5153365754x” +0.02586606205x°

G,(1/3,x)=1
,(1/3,%) (0.1128188889+x/7)"

(3.25)
3.4 Function G,(v,x) forx; =7,s=4,m=13,1,=18
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The transition from s = 1 to s = 4 in the considered case increases the precision significantly:
instead of 2.13x10'* (upper estimation for | d,| for [v| < 1 in the case x; = 7, s = 1) errors less than
3.16x107'% occur. On basis of calculations we use /4 = 0.467, g = 1.5. For two values of v=10, 1 we
use required four values q3(v, x1), q13(v, x2), q13(v, x3), q13(v, x4) and further determine optimum
values of w, = 0.11318, 0.11270. Interpolating we obtain

w, = 0.11318-0.00048° (3.26)

which ensures required precision at the interval 0 <v < 1. Now only four values q3(v, x1), q13(v, x2),
q13(v, x3), q13(v, x4) are required to construct the approximation G,(v, x) for the corresponding value
of v. Instead of exact values of ¢g3(v, x;) (j = 1,...4), the interpolating functions analogous to (3.17)
— (3.20) can be easily found:

13 (v,x,) ~ cos(v) "™ (84.608924305 — 0.143349092v +0.0041834681*)10™°
(3.27)

G5 (v,x,) ~ cos(mv) "2 (34.133194725-0.058835126v +0.0016779921*)10~°
(3.28)

G5 (v,x;) = cos(7v) €% (9.620077552 — 0.0169660851> +0.000470151*)10™°
(3.29)

g3 (v, x,) ~ cos(v) "2 (1.722369909 — 0.00311307 1> +0.0000837891*)10™°

(3.30)

These functions along with function (3.26) allow us to calculate G(v, x) directly for an arbitrary

v from the considered interval. The absolute value of error J, occurred when using G,(v, x) with

equations (3.26) and (3.27) — (3.30) remains less than 3.16x10"'® which is illustrated by Fig. 6

where the corresponding results are represented for values of v from 0 to 1 with step 0.1. The
function Q(v, x) can be written in the form:

;
Q(v,x)zk %vLGq(V,x) (3.31a)
=1
S w,+x;/x, :
Gq(v,x):z; m L, (x)q,5(v,x,) (3.31b)
J= q

Here equations (3.4), (3.22), (3.26), (3.27) — (3.30) should be applied. In accordance with (3.5)
the function (3.31b) is an even function of v. For a chosen value of v equation (3.31b) can be
reduced to a cubic polynomial divided by (w, + x/7)"%, so for v =0 we have:

5 10.65458363—1.88832261x +0.9073732455x> +0.04779090942x°

G (0,x)=10
q( ) (0.11318+x/7)18
(3.32)
Forv=1:
G (Lx) = _10°* 11.24656984 —1.995287024x +0.9649812411x* +0.05111109319x°
" (0.1127+x/7)"®
(3.33)
Forv=1/3:

s 5.359380714—0.9499569637x +0.4567984494x" +0.024074334x’

G (1/3,x)=10" ¥
v (0.1131266667 +x/7)

(3.34)

Using equations (3.1), (3.21), (3.31) one can calculate Bessel and Neumann functions for -1 <v

< 1 and further go to arbitrary values of v applying well known recurrent relationships. As

calculations show, an error for the functions Jy(x) and Y,(x) is less than 1.6 x10'® at the interval —1

< v < 1; this precision holds when applying the recurrent relationships for cylindrical functions for
v<6.
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Fig. 6 Errors , of approximation for deviation g,,(v, x) withm =13, s =4,x, = 7.

]
7 8

3.5 Function G,(v,x) forx; =3,s=1,n=6,4,=8
The approximation for x; = 3 is less exact than in the case x; = 7 considered above, however the
accuracy 1is still acceptable for many applications. We present equations analogous to equations

(3.9), (3.11)
w, =0.15704-0.0027v’ (3.35)

P(v,3) ~cos(zv)e™ (1=v*)py(0,3)=v'e ™ p,(1,3)) = cos(zv) ™' (36.82385+0.01128*)10°°

(3.36)
where o = 0.14198. Here two interpolation points v; = 0, v, = 1 are sufficient for approximation
pe(v, 3). The absolute value of error 6, occurred when using G,(v,x) with equations (3.35) and
(3.36) remains less than 6.5x10°® which is illustrated by Fig. 7 where the corresponding results are
represented for values of v from 0 to 1 with step 0.1.

77 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ]
6 1
5 1 N
4 B
3 7
2 7
o v=1 ]
S
X0 —— — —
w0 _]
v=_0 il
\ \ \ \ ]
6 7 8 9 10

X

Fig. 7 Errors o, of approximation for deviation p,(v, x) forn=6,s =1, x; =3.

Considering the function P(v, x) itself we obtain the following approximation:
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8

w +1

P(v,x)z1+a—§+a—i+a—g+ —L— | p(v,3) (3.37)
x° xT x wp+x/3

Here equations (3.3), (3.35), (3.36) should be applied. In accordance with (3.5) the function
(3.37) is an even function of v.

3.6 Function G,(v,x) forx,=3,s=1,m=5,2,=7
We present equations analogous to equations (3.35), (3.36)

w, =0.15747-0.0038v" (3.38)
qs(v,3) = cos(zv) "' (36.32326 +0.01621*)10°° (3.39)

The absolute value of error J, occurred when using G,(v, x) with equations (3.38) and (3.39)
remains less than 6x10° which is illustrated by Fig. 8. For the function O(v, x) we obtain the
following approximation:

;
+1

Q(v,x)z5+b—?;+b—5+ T Gv3) (3.40)

X X wq+x/3

5
X

Here equations (3.4), (3.38), (3.39) should be applied. When determining the functions J,(x) and
Y,(x) using (3.1), (3.37), (3.40) error for the interval =1 <v <1 is less than 3x10°".
6 T ‘ T ‘ ‘ T ‘ T ‘ T ‘ T
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Fig. 8 Errors J, of approximation for deviation ¢,,(v, x) form=5,s=1,x, = 3.

4. Conclusions

The correction of asymptotic expansions suggested in the paper significantly improves the
precision and as result one can apply the corrected expansions beginning from significantly
smaller values of argument than in the case of usual expansions. For cylindrical functions, the
method allows obtaining simple formulas which include explicit dependence on order’s values.
Actually the possibility occurs to apply the corrected asymptotic expansions beginning from a
small enough value x; of the argument so that for x < x; the Taylor series can be used.
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