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Abstract

In a vicinity of a stationary point of a multivariable function, the quadratic interpolating function
containing along with unknown coefficients also coordinates of the stationary point itself is
constructed. The coefficients are determined (independently of the stationary point) exactly and
rather simply due to the specific choice of interpolation points in the considered n-dimensional
space. Knowing the coefficients allows us to obtain a system of n linear equations for an
approximation for n coordinates of the stationary point. This process is repeated iteratively with
placing the new set of the interpolation points into immediate proximity of the stationary point
found approximately at the previous iteration (with decreasing distances between points of the set).
The method is free from determination of derivatives and requires only a single iteration when the
given function is quadratic itself. A connection between the method and the Newton method is
considered. The important new result could be formulated as follows: if the stationary point of a
quadratic function is searched, the finite-difference analog of Newton equations can be used one
time, and the location of the initial point and values of steps along coordinate axes can be taken in
an arbitrary way. This can serve as a good base for practical applications in engineering and
mathematical physics.
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1. Introduction

Among numerous methods of optimization, parabolic interpolation represents a widely
used method for the one dimensional cases. The attempts to spread this quadratic
interpolation method over the domain of multivariable functions apparently have not been
made whilst the problem becomes rather simple when choosing a specific set of
interpolation points. As result we obtain a method which is free from determination of
derivatives and is exact and not requiring iterations when the objective function is
quadratic itself. In the general case, the essence of the method suggests that the
interpolation points become more and more close to the sought-for stationary point, i.e. an
iteration process should be applied in which distances between the interpolation points are
decreased and the whole set is placed more and more nearly to the previously found
approach to the stationary point. In this paper, an analysis of the existing methods of
optimization is not carried out, one could it found in books (see, e.g., [1]-[6]).

2. Description of the Method

The suggested method is characterized by including coordinates of the stationary point
into an iteration process which leads to more and more exact values of the coordinates. In a
vicinity of a stationary point S, we represent an enough smooth function F(x,,....,x,) of n
variables xi,....,x, in the form of the quadratic function:
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F(x,....x,) = G(x,...,x,) = A4, + Zn:Aii(xi ~8,)° + nii Zn: A4;(x,=S)(x,=S)) (2.1)

i=l j=i+l

In the last group of terms, only the coefficients with j > i are considered; the terms of
the first power are not present due to the presumed stationarity of the point S. The number
of the coefficients 4;;, A; in (2.1) is n+n(n—1)/2; it can be said that they form a symmetrical
matrix whose diagonal elements and elements of the upper triangular matrix enter into
(2.1). The representation (2.1) contains coefficients 4o, 4;;, A; which are to be found and
also unknown coordinates of the assumed stationary point, S,S.,...,5,; thus the total
number of unknowns is 1+2n+n(n—1)/2. For determination of the unknowns we require that
the function represented by (2.1) gives the values of the function F(x,,....,x,) at 1 + 2n +
n(n—1)/2 points located in a vicinity of the point S. The more close the points to the point S
are the more exact the equation (2.1) is and more exactly the stationary point will be found.
Note that in paper by Powell [7] the possibility of finding the above mentioned function
G(xi,....,x,) using the required number of function values of F(x,,....,x,) was pointed out
and estimated as “likely to be a bad method”. However a specific choice of interpolation
points allows obtaining very effective solution for the corresponding system of equations
which leads simultaneously to an approach to the coordinates of the stationary point.

Fig. 1. Set of interpolation points (3-dimensional case). Lines have been shown which go from point M,
parallel to coordinate axes.

The following set of the points is advisable (see Fig. 1 which illustrates the case n = 3):
the points M,,...,M} s, are taken at lines “parallel” to coordinate axes (M; and two
additional points with a step A; for each such line), and the points M;; (i = 1,2,...,n—1;j =
i+1,...,n) lie in the planes parallel to the planes (x;x;) and have x;-coordinate equal x;-
coordinate of M, plus 4; and xj-coordinate equal x;-coordinate of M, plus 4;; the parameters
h; (steps along axes) should be decreased during the process of iterations in which a new
set of points for the next iteration is located near the point S found at the previous iteration;
it is recommended to place the new point M; into the found point S. We see that the
number of the points corresponds to the number of the unknowns. Denoting the i-th
coordinate of the points My, M, by x;x, X5, respectively, the system of equations can be
written in the form:
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n n-1 n
4, +ZA,.,.(xi,k -S,) +z Z A, (X, = S)(x,, —S)=F,
i=1

i=1 j=i+l

(k=1,2,..,2n+1)

n n—-1 n
A, + Z A(x,  — Si)2 + Z Z Ai/'('xi;r,s - Si)(x_/;r,s - S_/) =F
=1

i=1 j=i+l

2.2)

(r=12,...,n—-l;s=r+1,...,n)

Here Fi = F(X14- - Xnk)s Frs = F(X1.s5- . ...Xn:s) are values of the objective function in the
considered points; the equations for the points M;, lying at coordinate “lines”, and the
points M, lying in the corresponding coordinate “planes” are conveniently written
separately. Owing to the choice of the points the system (2.2) allows rather simple
solution. The coefficients 4; (i = 1,2, ...n) are determined considering n groups of three
points lying at coordinate “lines” (see Fig. 1 ): M,,M,,M3; M,M4,Ms;... Mi,M>,,M>,+1. In
each group, the points have identical coordinates other than x; (for the first group), x, (for
the second group) and so on. This allows us to eliminate all unknowns except the
considered A;. We subtract from the equation for the point M>; the doubled equation for the
first point of i-th group (i.e. M) and add the equation for the third point of the group (i.e.
M,ii1). Accounting that the terms not containing x; cancel out, we write below only the
terms in which the coordinate x; , x;;, Xi,:1, are present:

A (205, =8 +(x,, +h, =S +(x,, —h —5))

+ z Aij (_2()5[,1 - Si)(xj,l - Sj) + (xi,l +h - Sz‘)(xj,l - S/') + (xi’l —h - Si)(xf’l B Sf))
J=itl (2.3)
i1

+Z Aji (_2('xj,1 - Sj)(xi,l —-S)+ ('xj,l - Sj)(xi,l +h—S5,)+ (‘xj,l - Sj)(xi,l —h - Si))
=

= F,-2F +F,

i+l

All terms in (3), except those containing A;;, disappear which results in:
in — ZE + in+1
2 (2.4)

‘Zlii = hizAii =

(i=12,...,n)

The coefficients A;; are equal to halved finite difference approximations of second
partial derivatives of the given function. We emphasize that in our treatment this result
corresponds to an exact solution of the system of equation (2.2) regardless of accuracy of
derivatives’ approximations. For determining the coefficients 4;; (j > i) we consider n(n—
1)/2 groups of four points lying in coordinate “planes” (x;,x;), 1.e. the points M,M>;,M>;,M; .
The following combinations of equations for each group are considered: the second
equation (i.e. for the second point of the group) is subtracted from the first one plus the
fourth equation minus the third one. In this combination finally only the terms with 4; (j >
i) remain and we obtain:

Ay = Ahh, = F - F, —F, +F, 2.5)
i=L2,...,n-1j=i+1,..,n)

The coefficients 4; represent finite difference approximations for the mixed second
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partial derivatives; emphasize again that we have obtained the exact solution of the
considered system of equations. The elements of the low triangular matrix 4;; are adopted
using the symmetry. Note that all coefficients have been found independently of unknown
values S..

After determining the coefficients 4;, A4; the approximate coordinates S; of the
stationary point can be found. It is advisable to represent the coordinates in the form:

S, =X, —ho, (2.6)
using the new unknowns J; (normalized coordinate deviations of the point M; from the
point S). The corresponding »n equations can be written by subtraction the equation for the
point M, from equations from the point M,; (i = 1, 2,...,n). It is clear that the terms with
coefficients 4,, where p # i, s # i can be omitted from the outset and we keep only the
terms with 4;; (j = 1,...,i-1), 4;;, A;j (j =i +1,...,n), i.e. the terms in which the coordinate x;
is present (being different for the two considered points). The system of equations has the
form:

A“(xj,l _Sj)((‘xi,l +h=S5)—(x, _Si))+ 4, (('xi,l +h, _S[)z —(x;, _S[)z)

i—1
Ji
j=1

J=

+ Z Agj ((xi,] +hi _Si)_(xi,l _Si))(xj,l _Sj) = in _E

Jj=i+l
(2.7)
(i=1,...,n)
Or accounting for (2.6)
S 7 A > 7 y F—FE
Y A5, 4246+ ) A5, =—(F,—F—4,) =22
= = 2 (2.8)

The coefficients of the equations are determined by equations (2.4), (2.5); along with
the solution of (2.8) (assuming that the corresponding matrix is not singular) the
coefficients represent an exact solution of the system (2.2). Therefore in the case when the
given function is quadratic itself, the single application of equations (2.8) (single iteration)
leads to the determination of the stationary point independently of the location of the point
M, and the steps h;. Note that the right-hand sides in equations (2.8) correspond to the
derivative (multiplied by #4;) at the point M; defined by the centered difference
approximation.

1. In the case n =1, above formulas give:

F —F,
o, = Z/] 3’S1:x1,1_h1§1 2.9

11
This result corresponds to the well known method of inverse parabolic interpolation.
2. The corresponding solution for n = 2 will be:
b = }72 _F; b = th _F;
1 > 72 2

D= 4211‘:122 - 21225 >

- - - - 2.10
2A22b1 — A12b2 2Anbz — A12b1 ( )

o, = D ,0, = D 8 = X1 —hé,,S, = X1 -6,
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3. For n =3 we present an expression for the third right-hand part of system (2.8) in
addition to those given already in (2.10):

b=l @.11)
2
The solution can be represented using determinants:
_ 1 4 Ry 142 4 q2 g 32
D= 2<4A11A22A33 A Ay Ay — A Ayy — Ay Ay~ A33A12)a
b (4222‘233 - ~223 ) —b, (2 ~33 ~12 - 213;123 ) +b; (;112223 - 2;122;113)
0 = 5 ,
b, (4233‘211 - A123 ) — b, (2‘:111223 a 212‘413 ) +b, (‘:113‘:123 —2 ~3312112 )
5, = , (2.12)
D
5 = b (4A11A22 - A122 ) —b, (2A22A13 —Ayn 4, ) +b, <A12A13 —24,, 4, )
37 )
D

S, =x,-hd, (i=1,2,3)

1

3. Relation to Newton Method

The system (2.8), the above formulas for the coefficients 4;;, 4; and right-hand parts of
the system (2.8) show that the quadratic interpolation applied corresponds to Newton
method with replacements of the Hessian terms with the corresponding finite difference
approach (see (2.4), (2.5)), and instead of the first partial derivatives the centered
difference approximations are used. Note that the values of J; correspond to the deviations
from the supposed stationary points (see (2.6)), whereas in the Newton method we deal
with the values opposite in sign to d;, so in right hand sides also the signs are opposite. The
important new result could be formulated as follows: if the stationary point of a quadratic
function is searched, the Newton equations with indicated replacements can be used one
time, and the location of the initial point M; and values of steps /; can be taken in an
arbitrary way.

In the general case, for sufficient exact determination of the stationary point of a twice
continuously differentiated function, the corresponding iteration process should be
performed in which the steps /; along coordinate lines become more and more smaller (e.g.
divided by a value greater than 1 after each iteration) whereas the point M, is placed nearly
the already found point S (current approach to the stationary point); it is advisable to use
for the coordinate of the new point M, the relationship x;,= S;. These characteristics of the
suggested algorithm follow from the fact that the considered quadratic approach is
searched as the interpolation function becoming in the iteration process more and more
close to the quadratic part of the corresponding Taylor series; the method during the
progress of the iterations is more and more close to the classic Newton method.

4. Some Examples

Three method: method of Davies, Swann and Campey; Powell’s method and Smith’s
method considered in the paper by Fletcher [8], are compared with the suggested
interpolation method for the following functions.

1. Rosenbrock’s function [9]
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F(x,%,)=100(x, —x? ) +(1-x,)’ (4.13)

Starting at the set with M, having coordinates (—1.2,1) and the steps /;=h,=0.03 with
subsequent dividing them by 3 after each iteration we achieve after 8§ iteration the point
5(0.999995,0.999990) with the function value 7.3x107''; it should be noted that the
behavior of the function is not monotonic in the course of iterations. The number of
function determinations is 8x6=48, whereas using other method (see [4]) requires
significantly more function determinations for reaching the same smallness of the function
value.

2. A function of 4 variables [7]:

F(x,,%,,%,,%,) = (x, +10x,)* +5(x; —x,)” + (x, —2x,)* +10(x, —x,)" (4.14)
with starting point M;(3,-1,0,1) and initial equal steps #=2.1 which are divided by 2 after
each iteration. A point with the value of the function 2.22x10™ has been achieved after 7
iteration, so the number of function determinations equals 7x15=105 which again is
smaller than for other methods [8]. It should be noted rather large values of steps in this
example which are far from those ensuring an acceptable finite-difference approximation
for derivatives; of course, this approximation is not needed in the considered method of
interpolation.

3. A helical valley [10]:
F(x,,%,,%,) =100((x; ~100)* + (= 1) )+ x3 “.15)
x, =rcos(270), x, =rsin(270)

with the initial point M,(—1,0,0), equal initial steps 4,=0.5 which are divided by 3 after each
iteration. After 11 iterations we come to the function value 2.92x10'%. Thus the number of
function determination is 11x10=110 which is smaller than in the case of the three
methods considered in [8].

It should be noted that the indicated good convergence of the suggested method takes
place only for a suitable choice of the initial steps and the rate of steps decrease.

5. Conclusions

Although applications of finite-difference approximations for derivatives in the context
of Newton method represent a well known treatment of the optimization problem,
apparently it was not recognized before that this treatment (with the above indicated kinds
of finite-difference approximations) leads to an exact method of quadratic interpolation
and therefore allows obtaining the instantaneous solution when the function under
consideration is quadratic itself. A quick convergence should take place for functions close
to quadratic ones. It should be emphasized the possibility of a method improvement by
including the corresponding linear optimization after each realization of the quadratic
interpolation.

References

1. Dennis, J. E. and Schnabel, R. B., ‘NumericalMethods for Unconstrained Optimization’, Prentice-Hall,
Englewood Cliffs, New Jersey, /983.

2. Edgar, T. E., Himmelblau, D. M., Lasdon, L. S., ‘Optimization of chemical processes’, McGraw-Hill,
New York, 2001.

3. Fletcher, R.,’ Practical methods of optimization, volume 1, Unconstrained optimization’, John Wiley &
Sons, New York, 71980

4. Gill, P.E., Murray, W., Wright, M., 'Practical Optimization’, Academic Press, London, /982.

68



“

10.

G.B. Muravskii

Nocedal, J. and Wright,S. J., ‘Numerical Optimization’, Springer-Verlag, New York, 7/999.

Singiresu, S. Rao., ‘Engineering Optimization: Theory and Practice’, Fourth Edition, John Wiley &
Sons, New York, 2009.

Powell, M. J. D., ‘An iterative method for finding stationary values of a function of several variables’,
The Computer Journal, 5 (1962), 147-151.

Fletcher, R., Function minimization without evaluating derivatives—a review’, The Computer Journal,
8 (1965), 33-41.

Rosenbrock, H. H., ‘An automatic method for finding the greatest or the least value of a function’, The
Computer Journal, 3 (1960), 175-184.

Fletcher, R. and Powell, M. J. D., ‘A rapidly convergent descent method for minimization’, The
Computer Journal, 6 (1963), 163-168.

69



	Abstract

