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Abstract 
In a vicinity of a stationary point of a multivariable function, the quadratic interpolating function 
containing along with unknown coefficients also coordinates of the stationary point itself is 
constructed. The coefficients are determined (independently of the stationary point) exactly and 
rather simply due to the specific choice of interpolation points in the considered n-dimensional 
space. Knowing the coefficients allows us to obtain a system of n linear equations for an 
approximation for n coordinates of the stationary point. This process is repeated iteratively with 
placing the new set of the interpolation points into immediate proximity of the stationary point 
found approximately at the previous iteration (with decreasing distances between points of the set). 
The method is free from determination of derivatives and requires only a single iteration when the 
given function is quadratic itself. A connection between the method and the Newton method is 
considered. The important new result could be formulated as follows: if the stationary point of a 
quadratic function is searched, the finite-difference analog of Newton equations can be used one 
time, and the location of the initial point and values of steps along coordinate axes can be taken in 
an arbitrary way. This can serve as a good base for practical applications in engineering and 
mathematical physics.  
 
2010 Mathematical Subject Classification: 41A05, 49M05. 
Key Word and Phrases 
Stationary point, Interpolation, Iterations, Newton Method. 
 
1. Introduction 

Among numerous methods of optimization, parabolic interpolation represents a widely 
used method for the one dimensional cases. The attempts to spread this quadratic 
interpolation method over the domain of multivariable functions apparently have not been 
made whilst the problem becomes rather simple when choosing a specific set of 
interpolation points. As result we obtain a method which is free from determination of 
derivatives and is exact and not requiring iterations when the objective function is 
quadratic itself. In the general case, the essence of the method suggests that the 
interpolation points become more and more close to the sought-for stationary point, i.e. an 
iteration process should be applied in which distances between the interpolation points are 
decreased and the whole set is placed more and more nearly to the previously found 
approach to the stationary point. In this paper, an analysis of the existing methods of 
optimization is not carried out, one could it found in books (see, e.g., [1]-[6]).  
 
2. Description of the Method 

The suggested method is characterized by including coordinates of the stationary point 
into an iteration process which leads to more and more exact values of the coordinates. In a 
vicinity of a stationary point S, we represent an enough smooth function F(x1,….,xn) of n 
variables x1,….,xn  in the form of the quadratic function: 
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In the last group of terms, only the coefficients with j > i are considered; the terms of 

the first power are not present due to the presumed stationarity of the point S. The number 
of the coefficients Aii, Aij in (2.1) is n+n(n–1)/2; it can be said that they form a symmetrical 
matrix whose diagonal elements and elements of the upper triangular matrix enter into 
(2.1). The representation (2.1) contains coefficients A0, Aii, Aij which are to be found and 
also unknown coordinates of the assumed stationary point, S1,S2,…,Sn; thus the total 
number of unknowns is 1+2n+n(n–1)/2. For determination of the unknowns we require that 
the function represented by (2.1) gives the values of the function F(x1,….,xn) at 1 + 2n + 
n(n–1)/2 points located in a vicinity of the point S. The more close the points to the point S 
are the more exact the equation (2.1) is and more exactly the stationary point will be found. 
Note that in paper by Powell [7] the possibility of finding the above mentioned function 
G(x1,….,xn) using the required number of function values of F(x1,….,xn) was pointed out 
and estimated as “likely to be a bad method”. However a specific choice of interpolation 
points allows obtaining very effective solution for the corresponding system of equations 
which leads simultaneously to an approach to the coordinates of the stationary point.  
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Fig. 1 . Set of interpolation points (3-dimensional case). Lines have been shown which go from point M1 
parallel to coordinate axes. 

 
 
The following set of the points is advisable (see Fig. 1 which illustrates the case n = 3): 

the points M1,…,M1+2n are taken at lines “parallel” to coordinate axes (M1 and two 
additional points with a step hi for each such line), and the points Mi,j (i  = 1,2,…,n–1; j = 
i+1,…,n) lie in the planes parallel to the planes (xi,xj) and have xi-coordinate equal xi-
coordinate of M1 plus hi and xj-coordinate equal xj-coordinate of M1 plus hj;  the parameters 
hi (steps along axes) should be decreased during the process of iterations in which a new 
set of points for the next iteration is located near the point S found at the previous iteration; 
it is recommended to place the new point M1 into the found point S. We see that the 
number of the points corresponds to the number of the unknowns. Denoting the i-th 
coordinate of the points Mk, Mr,s by xi,k, xi;r,s, respectively, the system of equations can be 
written in the form: 
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Here Fk = F(x1,k,….,xn,k), Fr,s = F(x1;r,s,….,xn;r,s) are values of the objective function in the 

considered points; the equations for the points Mk, lying at coordinate “lines”, and the 
points Mr,s lying in the corresponding coordinate “planes”  are conveniently written 
separately. Owing to the choice of the points the system (2.2) allows rather simple 
solution. The coefficients Aii (i = 1,2, …n) are determined considering n groups of three 
points lying at coordinate “lines” (see Fig. 1 ): M1,M2,M3; M1,M4,M5;… M1,M2n,M2n+1. In 
each group, the points have identical coordinates other than x1 (for the first group), x2 (for 
the second group) and so on. This allows us to eliminate all unknowns except the 
considered Aii. We subtract from the equation for the point M2i the doubled equation for the 
first point of i-th group (i.e. M1) and add the equation for the third point of the group (i.e. 
M2i+1). Accounting that the terms not containing xi cancel out, we write below only the 
terms in which the coordinate xi,1, xi,2i, xi,2i+1, are present: 
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All terms in (3), except those containing Aii, disappear which results in: 
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The coefficients Aii are equal to halved finite difference approximations of second 
partial derivatives of the given function. We emphasize that in our treatment this result 
corresponds to an exact solution of the system of equation (2.2) regardless of accuracy of 
derivatives’ approximations. For determining the coefficients Aij (j > i) we consider n(n–
1)/2 groups of four points lying in coordinate “planes” (xi,xj), i.e. the points M1,M2i,M2j,Mi,j. 
The following combinations of equations for each group are considered: the second 
equation (i.e. for the second point of the group) is subtracted from the first one plus the 
fourth equation minus the third one. In this combination finally only the terms with Aij (j  >  
i) remain and we obtain: 
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The coefficients Aij represent finite difference approximations for the mixed second 
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partial derivatives; emphasize again that we have obtained the exact solution of the 
considered system of equations. The elements of the low triangular matrix Ãij are adopted 
using the symmetry. Note that all coefficients have been found independently of unknown 
values Si.  

After determining the coefficients Aii, Aij, the approximate coordinates Si of the 
stationary point can be found. It is advisable to represent the coordinates in the form: 

 
 ,1i i iS x h i                                                                         (2.6) 

using the new unknowns δi (normalized coordinate deviations of the point M1 from the 
point S). The corresponding n equations can be written by subtraction the equation for the 
point M1 from equations from the point M2i (i = 1, 2,…,n). It is clear that the terms with 
coefficients Aps where p ≠ i, s ≠ i can be omitted from the outset and we keep only the 
terms with Aji (j = 1,...,i–1), Aii, Aij (j = i +1,…,n), i.e. the terms in which the coordinate xi 
is present (being different for the two considered points). The system of equations has the 
form: 
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(i = 1,…,n) 

Or accounting for (2.6)  
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The coefficients of the equations are determined by equations (2.4), (2.5); along with 
the solution of (2.8) (assuming that the corresponding matrix is not singular) the 
coefficients represent an exact solution of the system (2.2). Therefore in the case when the 
given function is quadratic itself, the single application of equations (2.8) (single iteration) 
leads to the determination of the stationary point independently of the location of the point 
M1 and the steps hj. Note that the right-hand sides in equations (2.8) correspond to the 
derivative (multiplied by hi) at the point M1 defined by the centered difference 
approximation.  

 
1. In the case n =1, above formulas give: 
 

2 3
1 1 1,1

11

,
4

F F
S x h

A 1 1 
 


                                                       (2.9) 

This result corresponds to the well known method of inverse parabolic interpolation. 
2. The corresponding solution for n = 2 will be: 
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3. For n =3 we present an expression for the third right-hand part of system (2.8) in 
addition to those given already in (2.10): 
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The solution can be represented using determinants: 
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3. Relation to Newton Method 

The system (2.8), the above formulas for the coefficients Aii, Aij and right-hand parts of 
the system (2.8) show that the quadratic interpolation applied corresponds to Newton 
method with replacements of the Hessian terms with the corresponding finite difference 
approach (see (2.4), (2.5)), and instead of the first partial derivatives the centered 
difference approximations are used. Note that the values of δi correspond to the deviations 
from the supposed stationary points (see (2.6)), whereas in the Newton method we deal 
with the values opposite in sign to δi, so in right hand sides also the signs are opposite. The 
important new result could be formulated as follows: if the stationary point of a quadratic 
function is searched, the Newton equations with indicated replacements can be used one 
time, and the location of the initial point M1 and values of steps hj can be taken in an 
arbitrary way. 

In the general case, for sufficient exact determination of the stationary point of a twice 
continuously differentiated function, the corresponding iteration process should be 
performed in which the steps hj along coordinate lines become more and more smaller (e.g. 
divided by a value greater than 1 after each iteration) whereas the point M1 is placed nearly 
the already found point S (current approach to the stationary point); it is advisable to use 
for the coordinate of the new point M1 the relationship xi,1= Si. These characteristics of the 
suggested algorithm follow from the fact that the considered quadratic approach is 
searched as the interpolation function becoming in the iteration process more and more 
close to the quadratic part of the corresponding Taylor series; the method during the 
progress of the iterations is more and more close to the classic Newton method.  
 
4. Some Examples 

Three method: method of Davies, Swann and Campey; Powell’s method and Smith’s 
method considered in the paper by Fletcher [8], are compared with the suggested 
interpolation method for the following functions. 
 
1. Rosenbrock’s function [9] 
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Starting at the set with M1 having coordinates (–1.2,1) and the steps h1=h2=0.03 with 
subsequent dividing them by 3 after each iteration we achieve after 8 iteration the point 
S(0.999995,0.999990) with the function value 7.3×10–11; it should be noted that the 
behavior of the function is not monotonic in the course of iterations. The number of 
function determinations is 8×6=48, whereas using other method (see [4]) requires 
significantly more function determinations for reaching the same smallness of the function 
value. 
 
2. A function of 4 variables [7]: 

2 2 4
1 2 3 4 1 2 3 4 2 3 1 4( , , , ) ( 10 ) 5( ) ( 2 ) 10( )F x x x x x x x x x x x x                        (4.14) 

with starting point M1(3,–1,0,1) and initial equal steps hi=2.1 which are divided by 2 after 
each iteration. A point with the value of the function 2.22×10–9 has been achieved after 7 
iteration, so the number of function determinations equals 7×15=105 which again is 
smaller than for other methods [8]. It should be noted rather large values of steps in this 
example which are far from those ensuring an acceptable finite-difference approximation 
for derivatives; of course, this approximation is not needed in the considered method of 
interpolation. 
 
3. A helical valley [10]: 
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with the initial point M1(–1,0,0), equal initial steps hj=0.5 which are divided by 3 after each 
iteration. After 11 iterations we come to the function value 2.92×10–12. Thus the number of 
function determination is 11×10=110 which is smaller than in the case of the three 
methods considered in [8].  

It should be noted that the indicated good convergence of the suggested method takes 
place only for a suitable choice of the initial steps and the rate of steps decrease. 
 
5. Conclusions 

Although applications of finite-difference approximations for derivatives in the context 
of Newton method represent a well known treatment of the optimization problem, 
apparently it was not recognized before that this treatment (with the above indicated kinds 
of finite-difference approximations) leads to an exact method of quadratic interpolation 
and therefore allows obtaining the instantaneous solution when the function under 
consideration is quadratic itself. A quick convergence should take place for functions close 
to quadratic ones. It should be emphasized the possibility of a method improvement by 
including the corresponding linear optimization after each realization of the quadratic 
interpolation. 
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