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Abstract 

In this paper, He's Variational iteration method is employed to solve the homogenous 

Smoluchowski coagulation equation. In statistical physics, the Smoluchowski coagulation equation 

is a population balance equation, describing the time evolution of the number density of particles as 

they coagulate to size x at time t. The intervals of validity of the solutions will be extended by using 

Pade approximation. Error will be decrease, as it is expected. The numerical results show the 

effectiveness and the simplicity of the methods.   
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1. Introduction 

    Variational iteration method (VIM) has been proposed by Ji–Huan He, in 1998, and has been 

applied to solve many linear and non-linear functional equations. There are many research 

documents, in the literature, for application of VIM to solve different functional equations, such as 

[1]-[6].  

    Let us consider the following non-linear functional equation, 

                                                    ( ) ( ) ( ) 0,L u t N u t g t                             (1.1) 

where L , N  and ( )g t  are a linear, a non-linear operator, and a known analytic function, 

respectively. In this method, a correction functional including a general Lagrange multiplier, will 

be constructed as follows, 

                                    1

0

( ) ( ) ( , ) ( ) ( ) ( ) , 0.

t

n n n nu t u t s t L u s N u s g s ds n                              (1.2)  

in which nu  is restricted variations, i.e., 0.nu   Lagrange multiplier can be identify optimally via 

the variational theory. An iterative formula, for computing the sequence of the approximations, will 

be obtained as soon as the Lagrange multiplier is determined. The successive approximations 

( ), 0,nu t n  of ( )u t  will be obtained by selection an initial approximation of the solution, 0 .u  Initial 

and boundary conditions must be satisfied by initial approximation, 0u . Iterative formula is 

constructed as follows; 

                                   1

0

( ) ( ) ( , ) ( ) ( ) ( ) , 0.

t

n n n nu t u t s t L u s N u s g s ds n                                (1.3) 

    Exact solution will be determined as the following limit, 

( ) ( ).n nu t im u t  

2. Pade Approximation 

    The series solution obtained by VIM has a small region of convergence. To extend the region of 

convergence, Pade approximation will be helpful. Pade approximation of a function is given by the
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ratio of two polynomials [4]. The coefficients of the polynomials in the numerator and denominator 

are determined by using the coefficients in the Taylor series expansion of the function. The Pade 

approximation of a function is shown as the following, 
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                            (2.1) 

where 
ic ’s are known coefficients and, 

ia ’s and 
ib ’s should be determined. The numerator and 

denominator have no factors in common. 

 

3. Homogeneous Smoluchowski Coagulation Equation 

    The physical process of coagulation of particles is often modeled by Smoluchowski's equation. 

This equation is widely applied to describe the time evolution of the cluster-size distribution during 

aggregation processes. In this paper, the following Smoluchowski's equation [7], [8], will be 

considered; 

                                                                                            (3.1)              

                                                                                                                  (3.2)                                                                                                                                                                                                          

where: 

                                                
0

1
( ) ( , ) ( , ) ( , ) ,

2

x

C u k x y y u x y t u y t dy                                             (3.3) 

                                                       
0

( ) ( , ) ( , ) ( , ) .C u k x y u x t u y t dy



                                                   (3.4)                                                                                                                                                                                                            

0u , is a known function. ( , )u x t , is the density of cluster of mass x  per unit volume at time t . Eq. 

(3.1) has been used in an amazingly diverse range of applications, such as the formation of clouds 

and smog [10], the clustering of planets, stars and galaxies [11], the kinetics of polymerization [12] 

and even the schooling of fishes [13] and the formation of marine snow [14].  

 

4. Applications 

   To illustrate the ability and the simplicity of the methods two examples are presented. 

 

Example 1. Eqs. (3.1) - (3.4) are considered with constant kernel, ( , ) 1k x y   and 0 exp( ),u x   

 [7]-[9]: 

                        
0 0

( , ) 1
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,

2

x
u x t

k x y y u x y t u y t dy k x y u x t u y t dy
t




   
                          (3.5) 

                                                                ( ,0) exp( ).u x x                                                              (3.6) 

  The exact solution is, 

                                                                                    (3.7) 

with  0

0

2
( )

2

M
N t

M t



 and  0 1.M   

  To solve Eq. (3.5), the following correction functional is constructed, 



K. Sadri & H. Ebrahimi  

 

 

 

56 

                 1

0 0 0

1
( ) ( , ) ( , ) ( , ) ( , ) , ,

2

t x

n n n n n n ns
u u s u u x y s u y s dy u y s u x s dy ds





 
     

 
                       (3.8) 

where   is general Lagrange multiplier, 
nu  is considered as restricted variations. To determine the 

value of   the following procedure should be followed, 

         1

0 0 0

1
( ) ( , ) ( , ) ( , ) ( , ) , 0,

2

t x

n n n n n n ns
u u s u u x y s u y s dy u y s u x s dy ds   





 
      

 
                  (3.9)                                                                                                                                                   

which is equivalent to, 

                                               1

0

1 ( ) ( ) 0.

t

n n nu t u s u ds    
                                             (3.10)                                                                            

Stationary conditions on Eq. (3.10) lead to, 

                                                       1 ( ) 0, ( ) 0.t s                                                     (3.11)                                                                                                              

The Lagrange multiplier is obtained as, ( ) 1.s    Having this multiplier the iterative formula (3.8) 

turns to; 

                        1

0 0 0

1
( , ) ( , ) ( , ) ( , ) , ,

2

t x

n n n n n n ns
u u u u x y s u y s dy u y s u x s dy ds





 
     

 
                    (3.12) 

Starting with 0 ( , ) ( ,0),u x t u x 1( , )u x t and 
2 ( , )u x t are computed as follows; 

1

1
( , ) 1 ( 2) exp( ),

2
u x t x x

 
    
 

 

   2 2 3 2 3

2

1 1 1
( , ) 1 (72 144) 18 108 108 36 12 24 exp( ),

144 144 144
u x t x t x x t x x x t x

 
           
 

  

     Other approximations easily obtain by (3.12). The fifth-order iterative solution is considered as 

the approximate solution. Now, diagonal Pade approximation 
2

2

 
 
 

 is calculated as follows; 

   
   

2 3 4 3 5 4 6 5 4 3 2

2 3 4 2 3 4 5 4 6 5 3 2 2

1152 1152 384 48 144 12 72 6 18 242
exp( ) .

2 1152 1152 384 48 576 172 1440 816 576 168 12 126 18 408 648 432 144

x x x x x x x t x x x x t
x

x x x x x x x x x t x x x x x x t

          
  

                 

 

     Exact solution, approximate solutions via VIM, and VIM-Pade, and absolute errors of these two 

methods are plotted in Fig.1. 

 

Example 2. As the second example, Eqs. (3.1) – (3.4) are considered with the multiplicative kernel, 

( , )k x y x y  and 0 exp( ) / ,u x x   [7]-[9], 

                                  
0 0

( , ) 1
( ) ( , ) ( , ) ( , ) ( , ) ,

2

x
u x t

x y y u x y t u y t dy x y u x t u y t dy
t




   
                      (3.13) 

                                                           
exp( )

( ,0) ,
x

u x
x


                                                                (3.14)   

with the exact solution, 

 

1

2
1

1

2 2

2

( , ) exp ( ) ,

I x t

u x t T t x

x t

 
 
 

   

 

where  1

2

1 , 0 1,

2 , .

t t
T

t otherwise

  


 


  

and  is the modified Bessel function of the first kind,  
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1

0

1
exp( cos )cos .I x d  





    

Similar to previous example, Lagrange multiplier is determined as, ( ) 1.s    Iterative relation may 

be constructed as follows, 

         1

0 0 0

1
( ) ( , ) ( , ) ( , ) ( , ) , .

2

t x

n n n n n n ns
u u u x y yu x y s u y s dy x yu y s u x s dy ds





 
      

 
                 (3.15) 

                                                                                                                                                     

Starting with  
0 ( , ) ( ,0),u x t u x  

1( , )u x t and 
2 ( , )u x t  are computed as follows; 

2

1

1 1 ( 2 )
( , ) exp( ),

2

x x t
u x t x

x x

 
   
 

 

2 2 3 2 4 6 5 3

2

1 1 (360 720 ) 1 (360 360 60 ) 1 (20 10 )
( , ) exp( ),

720 720 720

x x t x x x t x x x t
u x t x

x x x x

     
     
 

  

Other approximations will be easily obtained by (3.15). The fourth-order iterative solution is 

considered as the approximate solution. Now, diagonal Pade approximation 
2

2

 
 
 

 can be calculated 

as follows; 
   3 2 4 3 2 4 5 6 8 7 6 5 3 2 2

4 3 2 5 5 4 3 2

3600 12960 17280 8640 360 11520 10800 6120 1476 138 4320 11 138 738 2040 2160 7202 exp( )

2 2 1800 6480 8640 4320 180 1980 5040 5400 2160 342

x x x x x x x x x x t x x x x x x tx

x x x x x x x x x x

                  
 

               6 7 6 5 7 8 9 4 3 2
.

21 660 1260 171 21 1080 360x t x x x x x x x t        

           

Exact solution, VIM and VIM-Pade approximations, and errors of these two approximations are 

plotted in Fig. 2.  

 

 

                                                                 Fig. 1 Plots of example 1 

 

 

 

 

 

 

 

 

       a: Plot of the exact solution of Example 1                                        b: Plot of VIM approximation 

 

 

 

 



K. Sadri & H. Ebrahimi  

 

 

 

58 

 

 

 

 

 

 

c: Plot of VIM-Pade approximation 

d: Plot of absolute error of VIM approximation 

 

 

 

 

 

 

 

e: Plot of absolute error of VIM-Pade approximation 

f: Plot of absolute error of VIM approximation at time 0.3t    

                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 
g: Plot of absolute error of VIM approximation at time 0.6t   

h: Plot of absolute error of VIM approximation at time 0.9t   
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i: Plot of absolute error of VIM-Pade approximation at time  0.3t             

 j: Plot of absolute error of VIM-Pade approximation at time  0.6t   

 

 

                                                                                                      

 

 

 

 

 

                                   k: Plot of absolute error of VIM-Pade approximation at time  0.9t         

   

Fig. 2 Plots of example 2 

 

 

 

 

 

 

 

a: Plot of the exact solution of Example 2 

b: Plot of VIM approximation 
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c: Plot of VIM-Pade approximation 

d: Plot of absolute error of VIM approximation 

 

 

 

 

 

 

 

e: Plot of absolute error of VIM-Pade approximation 

f: Plot of absolute error of VIM approximation at time 0.4t   

 

 

 

 

 

 

 

g: Plot of absolute error of VIM approximation at time 0.8t   

h: Plot of absolute error of VIM approximation at time 1t   
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i: Plot of absolute error of VIM-Pade approximation at time 0.4t   

j: Plot of absolute error of VIM-Pade approximation at time 0.8t   

 

 

 

 

 

 

 

 

 

                                  k: Plot of absolute error of VIM-Pade approximation at time  1t                                                                                                          

 

5. Conclusions 

     In this paper, Variational iteration method (VIM) and VIM-Pade have been employed to solve 

the homogeneous coagulation Smoluchowski equation. Obtained solutions have been compared 

with the exact solutions. Figure 1 and Figure 2 show that the solutions of VIM and VIM-Pade are 

in good agreement with exact solutions. Also, for two Examples the maximum absolute errors by 

using of VIM-Pade are lesser than those of VIM. Computations are performed by using the 

package Maple 13. 
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