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Abstract 

In the present article, a predator-prey model with additional food and constant yield harvesting rate 

to predator is considered. It is assumed that additional food is not dynamic in nature, but available 

at a specific constant level either by the nature or by an external agency. The local stability of the 

equilibrium points of the model has been investigated. Further, it is shown that the model 

undergoes to different kind of bifurcations including Hopf bifurcation, Transcritical bifurcation, 

Saddle-Node bifurcation and Bogdanov-Takens bifurcation. The numerical simulation has been 

done which is in good agreement to the analytical findings. 
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1. Introduction  

The predator-prey interactions in ecosystem are very complex, and in order to develop a 

mathematical model, which explains the real life situation best, many changes and development 

have been made by researcher after the pioneering work Lotka-Volterra predator-prey model 

proposed by A.Lotka [1] in 1925 and V.Volterra [2] in 1926 independently. The harvesting of the 

marine and wild species is one of the most useful as well as dangerous interference by humans in 

the ecosystem because one side it provides food to a large population but the overexploitation may 

damage the ecosystem. Thus the management of renewable Biological requires a scientific 

analysis. The analysis of harvesting in predator-prey system started with the work proposed by 

C.W.Clark [3], the problem of combined harvesting of two fish species which are ecologically 

independent and growing logistically was studied. The global behavior of a predator-prey system 

with constant rate predator harvesting and constant rate prey harvesting was studied by F.Brauer 

and A.C.Soudack [4]-[5]. J.R.Beddington and J.G.Cooke [6] studied a Leslie-Gower type predator-

prey system in which preys are harvested at constant-yield rate and predators are harvested with 

constant-effort rate. In the same paper they also studied same system with constant yield harvesting 

on both the prey and predators. D.Xiao and S.Ruan [7] discussed the Bogdanov-Takens bifurcation 

for a predator-prey model with Holling-Type II functional response and constant rate predator 

harvesting. D.Xiao and L.S.Jennings [8] studied a predator-prey model with ratio-dependent type 

functional response in the presence of constant harvesting in prey species, while M.Xiao et al. [9] 

studied the same model but for constant predator harvesting and found the different dynamics. 

C.R.Zhu and K.Q.Lan [10] studied a Leslie-Gower predator-prey model with constant harvesting in 

prey only and studied phase portraits near the interior equilibrium. They also proved that the nature 

of predator free equilibrium depend upon the choices of the parameters while the interior positive 

equilibrium in the first quadrant are saddles, stable or unstable nodes, foci, centres, saddle-nodes or 

cusps. Y.Gong and J.Huang [11] studied the Bogdanov-Takens bifurcation for this model. J.Huang 

et al. [12] studied a predator-prey model with constant yield predator harvesting and showed that 

for some parametric conditions the system has cusps of codimension 2 and 3. The conditions for 

which the system has repelling B-T bifurcation and attracting B-T bifurcation are obtained. 

A number of species in the ecosystem exist which are migratory whose special scale is much 

longer than the habitat occupied by some of their prey, and so, for such types of species and
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alternative prey is required R.D.Holt and J.H.Lawton [13]. The additional food to predator is 

modelled mathematically as three species; one predator-two (non-interacting) prey system is 

available in M. van Baalen [14], J.T.Wootton [15] and J.D. Harwood and J.J.Obrycki [16]. An 

important result of these models is that the non-reproducing additional food (referred to as 

additional prey) to predator enhances the predator density which decreases the density of the target 

prey required R.D.Holt and J.H.Lawton [13], M. van Baalen [14]. But there are some practical 

work also available in literature, indicate that provision of additional food to predators need not 

always increase target predation R.D.Holt and J.H.Lawton [13], M. van Baalen [14],  J.T.Wootton 

[15], J.D. Harwood and J.J.Obrycki [16]. P.D.Spencer and J.S.Collie in [17] studied a two–species 

population model in which the predator is partially coupled to the prey in the presence of 

harvesting and intraspecific competition into predatory fish. P.D.N.Srinivasu et al. [18] have 

proposed another two dimensional predator-prey model with additional food to the predator and 

discussed the effect of both high and low quality of food. M.Sen et al. [19] studied the global 

dynamics for this model in the presence of constant yield harvesting in predator. 

T.K.Kar and B.Ghosh [20] studied a two species predator-prey model in which the predator is 

partially coupled with alternative prey and harvesting efforts applied to both the species. In this 

model, it is assumed that the additional food is not dynamic in nature, but available at a specific 

constant level either by the nature or by an external agency, they provided three examples for 

which the proposed model fits best. The purpose of this paper is to study the stability and 

bifurcation analysis for the model proposed by T.K.Kar and B.Ghosh [20] in the presence of 

constant yield harvesting in predator species. This work presents management strategies that 

manipulate the supply amount of additional food and rate of harvesting of the predator for the 

benefit of biological control of the system. 

 

2. Model Equations   

 

We consider the following bidimensional predator-prey system with constant-yield harvesting 

in predator species 

                                               {

  

  
   (  

 

 
)  

   

   
 

  

  
 

    

   
          

                                                          (2.1) 

 

with the initial conditions       ,      , where      and      are prey and predator density 

at time T and r, K,  ,  ,  ,   and H are positive parameters which represent intrinsic growth rate of 

prey, carrying capacity of prey in the absence of predator, capturing rate of the predator, conversion 

efficiency of predators, the extent to which the environment provides protection for prey, natural 

mortality rate and harvesting coefficient, respectively. F.Brauer and A.C.Soudack [4] studied the 

global behavior of system (2.1) for some parameter values by numerical simulations while D.Xiao 

and S.Ruan [7] studied the bifurcation analysis of the system (2.1). 

 In this article, it has been assumed that the predator is provided with additional food of biomass 

  (a time independent positive constant) which is distributed uniformly in habitat. Then the 

following system describes the predator-prey dynamics in the presence of additional food to 

predator and constant-yield predator harvesting:   

 

                                     {

  

  
   (  

 

 
)  

    

   
                     

  

  
 

     

   
             

                                          (2.2) 

 

If     the prey and predator will grow independently, that is, the system (2.2) becomes 

decoupled system. For     the predator depends only on the available food (focal prey  ) and 

the system (2.2) will be similar to the system (2.1). Moreover, system (2.2) is dynamically 

equivalent to the system (2.1) whenever     or      . Thus, our interest is to study the 
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dynamical behavior of the system (2.2) for       and        On introducing the non-

dimensional variables:                        
 

 
, the system (2.2) reduces to:  

                                      {

  

  
        

   

   
          

  

  
 

   

   
    h          

                                                    (2.3)    

  

with the initial conditions:                 

where    
  

  
          

 

 
,       

   

 
,            

 

 
,         

     

 
  ,                    

  

   
  and                        

   

   
       

 

3. Equilibrium Points and Qualitative Analysis 

The equilibrium points of the system (2.3) are the non-negative real solutions of the prey zero 

growth isoclines:  

                                                                                                                                       (3.1) 

and predator zero growth isoclines:  

                                                                                                                                 (3.2) 

The following two type of equilibrium points for the system (3) exist: 

(a) Axial equilibrium points: The axial equilibrium points of the system (2.3) are only the points of 

intersection of the curves     and          which is     (  
 

 
). 

(b) Interior equilibrium points: The interior equilibrium points of the system (2.3) are the 

intersection points,   
     

     
   and   

     
     

   of the curves          and          , 

and the abscissa of the equilibrium points are the solutions of the quadratic equation  

                                                                 h                                  (3.3) 

while the ordinance are given by   
  

      
  

          
            where:  

  
  

              √                  

      
            

If     
 

 
, the quadratic equation (3.3), has two positive real roots   

  and   
  whenever  

  

 
 

  
         

       
; a double positive real root  ̅  

      

      
   whenever  

  

  
   

         

       
; one 

positive real root    
      

   
, whenever   

  

 
  and one positive real root 

   
       √                  

      
, whenever   

  

 
. If     

 

 
 the quadratic equation (3.3), 

has one positive real roots    
       √                  

      
  whenever     

  

 
, has no 

equilibrium point whenever 
  

 
  .  

On summarizing the above discussion, the number and location of equilibrium points of system 

(2.3) can be described by the following: 

Lemma 3.1  

(i) The system (2.3) always has an axial equilibrium point E1  (  
 

 
)  
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     (ii) If        
   

 
, the system (2.3) has: 

a) no interior equilibrium point whenever   
         

       
  

b) two positive interior equilibrium point    
     

     
 ),   

     
     

 ) if  
  

 
   

         

       
. 

c) one positive interior equilibrium point  ̅    ̅  ̅) if  
  

 
   

         

       
. 

d) one positive interior equilibrium point       ,  ) if   
  

 
. 

e) one positive interior equilibrium point            if   
  

 
. 

    (iii)  If      
 

 
 , the system (2.3) has, 

a) no interior equilibrium point whenever 
   

 
  . 

b) one positive interior equilibrium point            if   
  

 
. 

 

Now, we discuss the dynamics of system (2.3) in the neighbourhood of each equilibrium point 

by using linearization technique.  

     

Theorem 3.1  

 a) The axial equilibrium point    of the system (2.3) is an unstable hyperbolic node if       

and hyperbolic saddle if      . 

b) The interior equilibrium point   
  of the system (2.3), if exists, is an unstable hyperbolic 

saddle. 

c) The interior equilibrium point   
  of the system (2.3), if exists, is asymptotically stable if 

  
  
 

    
           

    , is saddle if   
  
 

    
           

    , is a weak focus or 

a center if   
  
 

    
           

    . 

d) The interior equilibrium points       and    of the system (2.3), if exist, are always a saddle 

point. 

e) The interior equilibrium point   ̅ of the system (2.3), if exists, is a degenerate singularity. 

 

Proof: a) The Jacobian matrix of the system (2.3) at the axial equilibrium point   is: 

   
 [

  
 h

  
 

 h

  
 
], 

which confirms that the axial equilibrium point   is an unstable hyperbolic node if  h     and a 

hyperbolic saddle if  h    . 

 

b) The Jacobian matrix of the system (2.3) at the equilibrium point   
  is: 

   
  [

  
 (   

   
 

     
   

)  
   

 

    
 

    
 

     
   

   
 

    
   

]. 

The determinant of the Jacobian matrix     
 , det(   

      
  
 

    
 √            h      

 , 

confirms that the point    
  is a hyperbolic  saddle. 

 

c) The Jacobian matrix of the system (2.3) at the equilibrium point   
  is: 
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  [

  
 (   

   
 

     
   

)  
   

 

    
 

    
 

     
   

   
 

    
   

]. 

   (   
 )   

  
 

    
 √            h       , and the trace of    

 is   (    
     

  
 

    
           

    . Therefore, if   
  
 

    
           

    , the equilibrium 

point   
  is asymptotically stable, if   

  
 

    
           

    , the equilibrium point  

  
  is unstable and if   

  
 

    
           

    , which implies that the equilibrium 

point   
  is either a weak focus or a center as the eigenvalues of the Jacobian matrix    

  are 

purely imaginary. 

d) The Jacobian matrix of the system (2.3) at the equilibrium point     is:  

    [
  (   

   

       
)  

   

      

    

       
   

      
]. 

det(        
         

      
  . Thus, the equilibrium point   is a saddle point.  

 

The Jacobian matrix of the system (2.3) at the equilibrium point    is:  

   
 [

  (   
   

       
)  

   

      

    

       
   

    
  

]. 

   (   
)    

  

    
√            h          Thus, the point    is a saddle point. 

The Jacobian matrix of the system (2.3) at the equilibrium point    is:  

   
 [

  (   
   

       
)  

   

      

    

       
   

    
  

]. 

      (   
)    

  

    
√            h         Thus, the point    is a saddle point.  

e) The Jacobian matrix of the system (2.3) at the equilibrium point   ̅ is  

  ̅  [
 ̅ (   

  ̅

    ̅  
)  

  ̅

    ̅ 

   ̅

    ̅  
  ̅

   ̅
  

]. 

det(  ̅    implies that the point  ̅ is degenerate singularity and may has complicated properties.  

It has been proved in the theorem 3.1 that the unique interior equilibrium point   ̅  is a 

degenerate singularity and hence may have complicated properties. Now, we discuss the behavior 

of interior equilibrium point   ̅̅ ̅. 

 

Theorem 3.2  

 If the unique interior equilibrium point    ̅exists, it is:  

a) a saddle node whenever      
  

  .  
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b) a cusp of codimension 2 whenever      
  

                
       

 
   

    

   
 

  and        
      

   
  

  
  .  

Proof: Consider  ̂     ̅ ,  ̂     ̅  This transformation shifts the equilibrium point   ̅ of 

the system (2.3) to the origin and for the sake of convenience denote   ̂ as   and  ̂ as  , the system 

(2.3) can be rewritten as:  

                                      {

  

  
               

                  

  

  
               

                  
                           (3.4) 

 

where      
   ̅

         ̅ 
  ,       

  ̅

    ̅ 
,         

     ̅ 

    ̅  
 ,      

  

    ̅  
 ,     

      ̅ 

     ̅ 
     

  ̅

    ̅ 
          

      ̅ 

     ̅  
 ,      

  

    ̅  
  and          are the terms involving 

order three and greater. 

If           , then      ̅    but       ̅   . Hence  ̅ is a saddle node.  Further,      ̅     
whenever           . Now, on using the transformation                    with the 

parametric condition       ̅   , the system (3.4) reduces to the following system 

                                    {

   

  
       ̅̅ ̅̅̅  

     ̅̅ ̅̅̅                

   

  
    

̅̅ ̅̅̅  
     

̅̅ ̅̅                           
                                     (3.5) 

where: 

    ̅̅ ̅̅̅      
      

   
    ̅̅ ̅̅̅  

   

   
     

̅̅ ̅̅̅                       
   

    

   
,       

̅̅ ̅̅ ̅      
      

   
  

On using the transformation       
 

 
   ̅̅ ̅̅̅  

            ̅̅ ̅̅̅  
 , the system (3.5) reduces to 

                                         {

   

  
                                                        

   

  
    

̅̅ ̅̅̅  
       ̅̅ ̅̅̅     

̅̅ ̅̅                
                              (3.6) 

Finally, using the transformation     ,                     the system (3.6) reduces to  

                                        {

  

  
                                                                          

  

  
    

̅̅ ̅̅̅   (    
̅̅ ̅̅ ̅̅     

̅̅ ̅̅ )               
                              (3.7) 

If    
̅̅ ̅̅̅    and     

̅̅ ̅̅ ̅̅     
̅̅ ̅̅   , the system (3.7) is a cusp of codimension 2 at the origin in XY 

plane, i.e.  ̅ in xy-plane is a cusp of codimension 2. These conditions are known as non-degeneracy 

condition of a cusp of codimension 2.  

4. Bifurcation Analysis  

 

In this section, we discuss the bifurcations, which occur in the system (2.3). In previous section, 

it is shown that for certain parametric conditions, some of the equilibrium points may be hyperbolic 

or degenerate singularities, and hence, there is a possibility of bifurcation. 

 

4.1 Hopf Bifurcation 
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In Theorem 3.1, it is proved that the interior equilibrium point   
  is always a saddle point 

while   
 , is a weak focus or a center if    

  
 

    
           

      A Hopf bifurcation 

occurs where a periodic orbit is created as the stability of the equilibrium point   
 , loses.  

 

Theorem 4.1  

    The system (2.3) undergoes a hopf bifurcation with respect to bifurcation parameter   around the 

point   
        

  
 

    
           

      and: 

1) an unstable limit cycle arises around the point     
                       , 

2)  a stable limit cycle arises   
                       ,  

 

     Proof:  If   be the bifurcation parameter, then threshold magnitude  =  
|hf| 

exist, which satisfies 

det(   
 )   and tr(   

 )   and hence both the eigenvalue of the system (2.3) will be purely 

imaginary. Also:
 

[
 

  
(  (   

 ))]
    |  |

   
 

    
 .   

  
   

  
 /

(                       √                  )

       √                  

   

which is the transversality condition of the hopf bifurcation. This guarantees the existence of hopf 

bifurcation (see, L.Perko [21]). 

Now, to study the stability of limit cycle we compute the first Lyapunov number σ at interior 

equilibrium point   
 (  

 ,  
 ) of the system (2.3) using the procedure as given in L.Perko [21]. 

Let       
         

 . Then the system (2.3), in the vicinity of the origin, can be written as: 

  

  
      +     +     

 +     
 +     

  +      +    
  +        

  

  
      +     +     

 +      +     
 +      

 +     
  +      +     

        . 

where: 

   10 =    
 (    

   
 

     
   

),   01=  
   

 

    
     20= (    

    
 

     
   

),    11=  
  

     
   

        

        = 
   

     
   

 ,  21=
  

     
   

                    
    

 

     
   

       
   

 

    
   |  |      

 
    

 

     
   

      
  

     
   

               
    

 

     
   

       
  

     
   

               

       ∑     
 
          and        ∑     

 
           

Hence the first Lyapunov number σ for the planer system is: 

σ   
  

  
 

 ⁄      

{[  10  10 (   
                 )      01 (   

                ) 

    
       02                    10      

       02      
 (                  ) 

    10  10      
                 20 )]      

    01  10                  30     10   21+    ) 

    10      01    )]}, 
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where: 

  
  
 

    
 √            h     . 

Thus, the subcritical hopf bifurcation surface of the system (2.3) is: 

           h            
 

 
 
  

 
 h  

         

       
}. 

Similarly, supercritical hopf bifurcation surface of the system (2.3) is:  

   ,       h             
 

 
  
  

 
 h  

         

       
-. 

 

 4.2  Transcritical Bifurcation 

In Lemma 3.1, it is proved that the system (2.3) has always only one axial equilibrium point    . 

In Theorem 3.1, it is proved that the axial equilibrium point   is an unstable hyperbolic node, 

if   h    , and a saddle, if   h    . If  h    , one eigenvalue of the Jacobian matrix       
is 

zero and other is positive and also the interior equilibrium point   
  coincides with the axial 

equilibrium point   , whenever          . Thus, there is a chance of bifurcation around the 

axial equilibrium point   . 

Here, Sotomayor’s theorem has been applied to ensure that the system undergoes transcritical 

bifurcation at the equilibrium point    . 

 

Theorem 4.2 

The system (2.3) undergoes a transcritical bifurcation, if both conditions        and     
      hold. 

 

Proof: Since     (    
)   , whenever if   h    . Thus, one eigenvalue of the Jacobian matrix 

    
 is zero. Suppose   and   are the eigenvectors of the Jacobian matrix    

and    

 corresponding 

to zero eigenvalue respectively. And are given by, 

  0
 

 
 h

   

1 ;                *
 
 
+. 

 

Then, we have: 

    (    
   ])              

  |   (    
   ]) |  

 

 h
, 

      (    
   ])     ]  

 

 h
          as either            or           , 

Where: 

   (    
   ])  0

 
h

    ]

1 ;     (    
   ])  [

 

    ]  

 
 

     ]  
] ;    (    

   ])  [
   

   

   
   h

    

    

   
   h

    

]. 

 

Thus, the transversality conditions for transcritical bifurcation are satisfied.  

 

4.3  Saddle-Node Bifurcation 

From Lemma 3.1, we have if     
 

 
, the system (2.3) has two positive interior equilibrium 

points   
   and    

 , if  
  

 
   

         

       
  and these two interior equilibrium points coincide with 
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each other and a unique interior equilibrium point  ̅ is obtained, whenever  
  

 
   

         

       
. 

Also, the system (2.3) has no positive interior equilibrium points, if    
         

       
. The 

annihilation of equilibrium is may be due to the occurrence of saddle-node bifurcation for interior 

equilibrium points, which takes place, when the harvesting parameter h crosses the critical 

value   h
   ]  

         

       
. Sotomayor’s theorem has been used to ensure that the system (2.3) 

undergoes to saddle-node bifurcation, h is taken as bifurcation parameter.  

 

Theorem 4.3  

The system (2.3) undergoes a saddle-node bifurcation with respect to the bifurcation parameter 

  around the equilibrium point  ̅ if     
 

 

  

 
    

         

       
  and 

 ̅

   ̅
         ̅  

      
 

Proof: Since       ̅    , therefore one eigenvalue of the Jacobian matrix   ̅ is zero. Further, 

If      ̅      then other eigenvalue has negative real part. Suppose   and   be the eigenvectors 

corresponding to zero eigenvalue matrix of   ̅ and   ̅  
 respectively, and are given by, 

 

  0
 

      ̅

 

1 ;                0
 

         ̅ 

      ̅ 

1 

Now we have, 

   h( ̅ h   ]
)        

  

      
  , 

  [   ( ̅ h   ]
)     ]   

  ̅

   ̅
 

   

      
  . 

Where: 

   h( ̅ h   ]
)  *

 
  

+ ;    ( ̅ h   ]
)  [

   
    ̅

    ̅  
 

         ̅ 

    ̅  

 
    ̅

    ̅  
 

          ̅ 

     ̅  

]. 

Thus, the transversality conditions for saddle-node bifurcation are satisfied. The above equation 

discussion can be summarized as, 

The biological interpretation of the saddle node bifurcation is that when the rate of harvesting is 

more than the critical harvesting rate h   ]
 , then the prey species goes to extinction, which drives 

to extinction the predator species. However, the both prey and predator species always coexist in 

the form of a positive equilibrium for certain choices of initial values, whenever     h
   ]

. 

 

4.4 Bogdanov-Taken Bifurcation 

 

Theorem (4.3) confirms that the system (2.3) undergoes a saddle-node bifurcation at the 

equilibrium point  ̅ if exist, whenever       ̅     and      ̅     Consider the case when      ̅  

is also zero. These two parametric conditions imply that the Jacobian matrix   ̅ has a doubled zero 

eigenvalue. Thus, here is a chance of co-dimension 2 bifurcations (Bogdanov-Takens bifurcation). 

In theorem 3.2, it is shown that the equilibrium point  ̅ is a cusp of co-dimension 2 whenever:  

                     
   
    

   
   and      

      

   
        

Now, we consider   and h as the bifurcation parameter and reduce the system (2.3) into normal 

form of the Bogdanov-Takens bifurcation by employing a series of    change of coordinates in a 

small domain of (0, 0).  
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Theorem 4.4 

The system (2.3) undergoes a Bogdanov-Takens bifurcation parameters   and h around the 

equilibrium point    ̅̅ ̅  if exist whenever 
  ̅

    ̅ 
 

   ̅

         ̅ 
                          

   
    

   
   and       

      

   
        Moreover three bifurcation curves in λ1λ2 plane exist and 

through the B-T point and they are given by,  

Saddle-node curve: SN            
          , 

Hopf bifurcation curve: H= {       :  
 
       =

   

√   
√  

 
          

          , 

Homoclinic bifurcation curve:  HL =        :  
 
        

    

 √   
√  

 
          

          . 

Proof: Suppose the bifurcation parameter   and h vary in a small domain of Bogdanov-Takens 

point (in brief, BT-point) (h  ,   , and let (h      ,       be a point of neighborhood of the 

BT-point (h  ,     where      are small. Thus, the system (2.3) reduces to:  

                                                 {

  

  
        

   

   
  

  
 

   

   
          h     

                                   (4.1) 

The system (4.1) is     smooth with respect to the variables     in a small neighborhood 

of   h     .  

 

Define       ̅        ̅ system (4.1) reduces to:  

               {

   

  
                  

                     

   

  
                      

                    
                               (4.2)                                                                    

where      
   ̅

         ̅ 
      

  ̅

    ̅ 
           

     ̅ 

    ̅  
      

  

    ̅  
         ̅      

    
      ̅ 

     ̅ 
     =

  

    ̅  
 and       are the power series in         with powers   

   
 
  satisfying 

     . 

 

Let us introduce the affine transformation                    in the system (4.2), we get: 

       {

   

  
            

               
̅̅̅̅         

   

  
                                  

               
̅̅̅̅         

           (4.3) 

                      

where             
      

   
 ,       

   

   
 ,              ,               ,       ,  

                  
   

   
               ,     

             

   
  and    

̅̅̅̅    
̅̅̅̅  are the power 

series in         with powers    
   

 
 satisfying       . 

 

Consider the    change of coordinates in the small neighborhood of              
 

 
     

 , 

           
  , which  transform the system (4.3) into:  

{

   

  
      

̿̿̿̿          

   

  
  

  
  

  
    

  
   (

 

 
 
  
 
  

  
  
 
  

  
  

)   
  (    

  
  )       

̿̿̿̿         
                   

(4.4)   
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Then, the system (4.4) reduces to:  

{

   

  
    

   

  
                      

                            
           

          (4.5)     

           

where                                
 

 
                                , 

         are the power series in    with powers   
   and   

   and    is a power series in and    

and    involves terms like   
   

 
 satisfying           and        

 

We have       and       . Applying the Malgrange preparation theorem, one has: 

               
         (  

  
   

   
    

   

   
)         , 

with              and    is a power series of    whose coefficients depend on parameters 
       . 

 

Let: 

       ,    
  

√   
 and    √     , then the system (4.5) reduces to: 

                             {

   

  
                                                                       

   

  
 

   

   
 

   

   
   

   

√   
     

  
   

√   
                

                  

(4.6)                                    

where            is a power series in         with powers    
   

 
 satisfying       with    . 

 

Applying the parameter dependent affine transformation       
   

    
 ,       in the system 

(4.6) and using Taylor series expansion, we get: 

      {

   

  
   

   

  
  

 
         

 
            

                          
                           

(4.7) 

where  
 
        

   

   
 

   
 

    
  ,  

 
        

   

√   
 

      

    

 
 ⁄

 ,        
   

√   
 ,        and 

           is a power series in         with powers    
   

 
 satisfying       with    . The 

system (4.7) can be rewritten as:  

                     {

   

  
   

   

  
  

 
         

 
            

                   
                             (4.8) 

where            is a power series in         
  

 
with powers   

   
 
 

 
  

 
  satisfying         

  and      . 

 

As Rank[
 (     )

        
]   , system (4.8) is locally topologically equivalent to the normal form of the 

Bogdanov-Takens bifurcation as given below: 

                                     {

   

  
                                                                        

   

  
  

 
         

 
            

       
                                         (4.9) 

 

5. Numerical Simulations 
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1) If                             .  Then the system (2.3) has two positive 

interior equilibrium point   
    

   
     (0.787085, 0.847733) and 

   
    

   
 )                     and one prey pre equilibrium            . If    |  |  

          The two interior equilibrium points coincide and the system (2.3) has only one 

equilibrium point  ̅   ̅  ̅                      If       the system (2.3) has no interior 

equilibrium point (see Figure 1a). The saddle node bifurcation diagram has been depicted in the 

Figures 1b, 1c and the phase portrait diagram for    |  |           is depicted in Figure 1d in 

which the equilibrium point  ̅ is stable for the region lie between Magenta color trajectories while 

unstable for the remaining region. 

 

 

Fig. 1 Diagram (a) shows how the numbers of interior equilibrium point’s change with h while 

keeping other parameters fixed. The red curve is prey nullcline and Blue curve (h = 2), green curve 

(h = 0.303748) and black curve (h = 0.4) are predator nullcline. (b) and (c) are bifurcation diagrams 

for the threshold value of the harvesting parameter (h
SN

 = 0.303748). (d) Phase portrait diagram of 

the system (2.3) when h = 0.303748. The other fixed parameters are a = 0.7; b = 0.8; d = 0.01; m = 

2. 

 

2) If                         h     . Then the point   
    

   
 ) is a saddle point 

and the point    
    

   
 ) is stable (see Figure 2a). If     h ]              the interior 

equilibrium point are   
    

   
                       and    

    
   

                       

and the system undergoes to a hopf bifurcation at the point   
    

   
 ) and since the first Lyapunove 

number  σ           , a stable limit cycle arises around the point    
    

   
 ) (see Figure 2b). If 

           the interior equilibrium point are  
    

   
                      ,   

    
   

   

                    and a homoclinic loop is created around   
  (see Fig.2c).  
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Fig. 2 Diagram (a) is phase portrait diagram of the system (2.3) for fixed parameters a = 0.7; b = 

0.8; m = 2.h = 0:2; d = 0.01. The interior equilibrium point   
  is an asymptotically stable. (b) a 

stable limit cycle bifurcates through Hopf bifurcation around the equilibrium point   
  for d = 

0.02737585. (c) Limit cycle collides with the saddle point   
  and a homoclinic loop arises around 

  
 . 

 

 

3) If                  h                 . Then  h     and        

           the system (2.3) has no interior equilibrium point. The phase portrait diagram has 

been depicted in Figure 3a. If         h                     and the system (2.3) has 

one positive interior equilibrium point. The phase portrait diagram has been depicted in Figure 3b.  

 

Fig. 3  (a) Phase portrait diagram for the parameters a = 0.7; b = 0.1; m = 3; h = 0.4; d = 0.093333. 

No interior equilibrium point exists. (b) Phase portrait diagram for the parameters b = 0.8. A unique 

interior equilibrium point is a saddle. 
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6. Results and Discussion 

 

A real world problem is modelled using non-linear mathematical equations to describe the 

process with the help of a suitable number of variables, parameters, and so on. In this paper, we 

have analysed a non-linear bidimensional predator-prey model with Holling type II functional 

response in the presence of additional food to predator and constant yield predator harvesting. The 

qualitative analysis of proposed system shows that the harvesting rate and additional food 

coefficient affects much on the system. It is shown that the system (2.3) have only one axial 

equilibrium point while the positive interior equilibrium point changes from zero to two, depends 

upon the parametric conditions. These conditions are shown in Lemma 3.1 and depicted 

graphically in Figure 1a.  In Theorem 3.1   it is shown that axial equilibrium point is either an 

unstable node or a saddle point. If two interior equilibrium points exist, one is always a saddle 

point while other is either asymptotically stable or a saddle or a weak focus (or a centre) depends 

upon certain parametric conditions, obtained in theorem 3.1c and depicted in Figures 2a and 2b. 

 

It is also shown that the system (2.3) undergoes hopf bifurcation with respect to hopf bifurcation 

parameter  , function of additional food coefficient   . The first Liapanov number is calculated to 

study the stability of the limit cycle. In example 2 we calculated the Liapunov number numerically 

which is negative and hence a stable limit cycle arises around the equilibrium point, depicted in 

Figure 2b. An homoclinic loop is also obtained numerically in Figure 2c. The parametric conditions 

are obtained under which the system (2.3) enters a Transcritical bifurcation. The phase portrait 

diagrams of the system (2.3) for these parametric conditions are sketched in Figures 3a and 3b. A 

parametric region where one of the coexisting equilibrium is saddle and other is stable which gives 

the existence of a saddle-node bifurcation is obtained. The saddle-node bifurcation diagram is 

shown in Figures 1b, 1c and the parametric region lying between the Magenta colour trajectories of 

Figure 1d. The ecological significance of saddle-node and transcritical bifurcation gives the 

maximum threshold for continuous harvesting and providing additional food without the extinction 

risk of the predator species. 
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