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Abstract

In the present article, a predator-prey model with additional food and constant yield harvesting rate
to predator is considered. It is assumed that additional food is not dynamic in nature, but available
at a specific constant level either by the nature or by an external agency. The local stability of the
equilibrium points of the model has been investigated. Further, it is shown that the model
undergoes to different kind of bifurcations including Hopf bifurcation, Transcritical bifurcation,
Saddle-Node bifurcation and Bogdanov-Takens bifurcation. The numerical simulation has been
done which is in good agreement to the analytical findings.
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1. Introduction

The predator-prey interactions in ecosystem are very complex, and in order to develop a
mathematical model, which explains the real life situation best, many changes and development
have been made by researcher after the pioneering work Lotka-Volterra predator-prey model
proposed by A.Lotka [1] in 1925 and V.Volterra [2] in 1926 independently. The harvesting of the
marine and wild species is one of the most useful as well as dangerous interference by humans in
the ecosystem because one side it provides food to a large population but the overexploitation may
damage the ecosystem. Thus the management of renewable Biological requires a scientific
analysis. The analysis of harvesting in predator-prey system started with the work proposed by
C.W.Clark [3], the problem of combined harvesting of two fish species which are ecologically
independent and growing logistically was studied. The global behavior of a predator-prey system
with constant rate predator harvesting and constant rate prey harvesting was studied by F.Brauer
and A.C.Soudack [4]-[5]. J.R.Beddington and J.G.Cooke [6] studied a Leslie-Gower type predator-
prey system in which preys are harvested at constant-yield rate and predators are harvested with
constant-effort rate. In the same paper they also studied same system with constant yield harvesting
on both the prey and predators. D.Xiao and S.Ruan [7] discussed the Bogdanov-Takens bifurcation
for a predator-prey model with Holling-Type II functional response and constant rate predator
harvesting. D.Xiao and L.S.Jennings [8] studied a predator-prey model with ratio-dependent type
functional response in the presence of constant harvesting in prey species, while M.Xiao et al. [9]
studied the same model but for constant predator harvesting and found the different dynamics.
C.R.Zhu and K.Q.Lan [10] studied a Leslie-Gower predator-prey model with constant harvesting in
prey only and studied phase portraits near the interior equilibrium. They also proved that the nature
of predator free equilibrium depend upon the choices of the parameters while the interior positive
equilibrium in the first quadrant are saddles, stable or unstable nodes, foci, centres, saddle-nodes or
cusps. Y.Gong and J.Huang [11] studied the Bogdanov-Takens bifurcation for this model. J.Huang
et al. [12] studied a predator-prey model with constant yield predator harvesting and showed that
for some parametric conditions the system has cusps of codimension 2 and 3. The conditions for
which the system has repelling B-T bifurcation and attracting B-T bifurcation are obtained.

A number of species in the ecosystem exist which are migratory whose special scale is much
longer than the habitat occupied by some of their prey, and so, for such types of species and
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alternative prey is required R.D.Holt and J.H.Lawton [13]. The additional food to predator is
modelled mathematically as three species; one predator-two (non-interacting) prey system is
available in M. van Baalen [14], J.T.Wootton [15] and J.D. Harwood and J.J.Obrycki [16]. An
important result of these models is that the non-reproducing additional food (referred to as
additional prey) to predator enhances the predator density which decreases the density of the target
prey required R.D.Holt and J.H.Lawton [13], M. van Baalen [14]. But there are some practical
work also available in literature, indicate that provision of additional food to predators need not
always increase target predation R.D.Holt and J.H.Lawton [13], M. van Baalen [14], J.T.Wootton
[15], J.D. Harwood and J.J.Obrycki [16]. P.D.Spencer and J.S.Collie in [17] studied a two—species
population model in which the predator is partially coupled to the prey in the presence of
harvesting and intraspecific competition into predatory fish. P.D.N.Srinivasu et al. [18] have
proposed another two dimensional predator-prey model with additional food to the predator and
discussed the effect of both high and low quality of food. M.Sen et al. [19] studied the global
dynamics for this model in the presence of constant yield harvesting in predator.

T.K.Kar and B.Ghosh [20] studied a two species predator-prey model in which the predator is
partially coupled with alternative prey and harvesting efforts applied to both the species. In this
model, it is assumed that the additional food is not dynamic in nature, but available at a specific
constant level either by the nature or by an external agency, they provided three examples for
which the proposed model fits best. The purpose of this paper is to study the stability and
bifurcation analysis for the model proposed by T.K.Kar and B.Ghosh [20] in the presence of
constant yield harvesting in predator species. This work presents management strategies that
manipulate the supply amount of additional food and rate of harvesting of the predator for the
benefit of biological control of the system.

2. Model Equations

We consider the following bidimensional predator-prey system with constant-yield harvesting

in predator species
N N NP
CL rN(1——)——°‘

dT K 0+N’

4P opNP (2.1)
— = —uP —H,

dT  0+N

with the initial conditions N(0) > 0,P(0) > 0, where N(T) and P(T) are prey and predator density
attime T and r, K, a, 0, p, B and H are positive parameters which represent intrinsic growth rate of
prey, carrying capacity of prey in the absence of predator, capturing rate of the predator, conversion
efficiency of predators, the extent to which the environment provides protection for prey, natural
mortality rate and harvesting coefficient, respectively. F.Brauer and A.C.Soudack [4] studied the
global behavior of system (2.1) for some parameter values by numerical simulations while D.Xiao
and S.Ruan [7] studied the bifurcation analysis of the system (2.1).

In this article, it has been assumed that the predator is provided with additional food of biomass
A (a time independent positive constant) which is distributed uniformly in habitat. Then the
following system describes the predator-prey dynamics in the presence of additional food to
predator and constant-yield predator harvesting:

dN _ N) _ aANP
ar = '™N (1 K) 0+N’ 2.2)
dP _ aPANP B oo :
=2+ (1- AP — P —H,

If A = 0 the prey and predator will grow independently, that is, the system (2.2) becomes
decoupled system. For A = 1 the predator depends only on the available food (focal prey N) and
the system (2.2) will be similar to the system (2.1). Moreover, system (2.2) is dynamically
equivalent to the system (2.1) whenever A > 1or1 — A < u. Thus, our interest is to study the
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dynamical behavior of the system (2.2) for0 <A < 1and A+ x < 1. On introducing the non-
dimensional variables; N = Kx, P =y, T = f the system (2.2) reduces to:

dx o) Aaxy
T=x(1 -0 -ZL=xf(xy), 23
dy _ bxy . '
E—m+8y h—fZ(X,y),
with the initial conditions: x(0) > 0,y(0) > 0,
A 6 A H 1-A-
where @ =22, m =2, b;’%, h==2 §=2Hs0, fiy)=1-x-
ay _ bxy _
— and falx,y) = —t 8y — h.

3. Equilibrium Points and Qualitative Analysis
The equilibrium points of the system (2.3) are the non-negative real solutions of the prey zero

growth isoclines:

xf; (x,y) =0, (3.1)
and predator zero growth isoclines:

f,(x,y) =0. (3.2)
The following two type of equilibrium points for the system (3) exist:

(a) Axial equilibrium points: The axial equilibrium points of the system (2.3) are only the points of

intersection of the curves x = 0 and g(x,y) = 0 whichis E; = (0,%).
(b) Interior equilibrium points: The interior equilibrium points of the system (2.3) are the
intersection points, E{ = (x1, y1) and E; = (x5, y,) of the curves f(x,y) = 0and g(x,y) =0,
and the abscissa of the equilibrium points are the solutions of the quadratic equation

+0)x*—(b+0—om)x+ah—om=0, .
b+8)x*—(b+8—6m)x+ah—8m =0 (3.3)

hantxy) ) — 1,2, where:

while the ordinance are given by y; = St (bro)x]
k

b+38—dm+ (-1 /(b + 5+ dm)2 — 4ah(b + J)

k=1,2.
2(b+3) '

X =

Ifm<1+ g, the quadratic equation (3.3), has two positive real roots x; and x, whenever %m <

(b+5+8m)? | .. _ _ b+3-dm dm _ (b+3+dm)?
rOOR a double positive real root x = 27D) , Whenever < h_—4a(b+6) ; one
- % b+6—m dm -
positive real root x* = prranlil whenever h = — and one positive real root
b+5—8m+/(b+5+8m)2—4ah(b+3 5 b . .
3 = e+ (b+3+0m)?~4ah(b+9) \henever h < O 1f m > 1+ Lthe quadratic equation (3.3),
2(b+5) a 8

b+38—3m+,/(b+8+8m)2—4ah(b+5)
2(b+3)

. 5
has one positive real roots x, = , Whenever h<7m, has no

. . 5
equilibrium point whenever == < h.

On summarizing the above discussion, the number and location of equilibrium points of system
(2.3) can be described by the following:

Lemma 3.1

(i) The system (2.3) always has an axial equilibrium point E; = (0%)
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@(i)If m< 1+ %, the system (2.3) has:

. . R . (b+8+8m)?
a) no interior equilibrium point whenever h > 421D
2
b) two positive interior equilibrium point Ef = (x;,y7), E3 = (3,3) if Z> <h < %
— 2
c) one positive interior equilibrium point E = (%, y) if %m <h< %.

d) one positive interior equilibrium point E* = (x*,y*) ifh = %m.

e) one positive interior equilibrium point E; = (x3,y3) ifh < %m.
(iii) If m> 1+, the system (2.3) has,

a) no interior equilibrium point whenever % < h.

b) one positive interior equilibrium point E; = (x4,y,) if h < %m.

Now, we discuss the dynamics of system (2.3) in the neighbourhood of each equilibrium point
by using linearization technique.

Theorem 3.1

a) The axial equilibrium point E; of the system (2.3) is an unstable hyperbolic node if ah < édm
and hyperbolic saddle if ah > ém.

b) The interior equilibrium point E; of the system (2.3), if exists, is an unstable hyperbolic
saddle.

c) The interior equilibrium point E5 of the system (2.3), if exists, is asymptotically stable if

8+ (1+b—m—2x3) <0,is saddle if 5 + —2- (1 +b — m — 2x3) > 0, is a weak focus or
2

X
m+x; m
acenterifd +

X3

ez (L+b—m—2x3) = 0.

d) The interior equilibrium points E*, E5; and E, of the system (2.3), if exist, are always a saddle
point.
e) The interior equilibrium point E of the system (2.3), if exists, is a degenerate singularity.

Proof: a) The Jacobian matrix of the system (2.3) at the axial equilibrium point E;is:
ah
Jg, = H 6m ’
1 ﬂ 5

Sm

which confirms that the axial equilibrium point E;is an unstable hyperbolic node if ah < émand a
hyperbolic saddle if ah > &m.

b) The Jacobian matrix of the system (2.3) at the equilibrium point EJ is:

ay; ax;
T T
_ (m+x7)? m+x;
IE; - bmy’ bxj}
PR * + 8
(m+x7)? m+x]

X

The determinant of the Jacobian matrix Jg:, det(Jg;) = —
0,

/(b + 5+ 6m)? — 4ah(b + ) <
1

m+

confirms that the point Ej is a hyperbolic saddle.

c) The Jacobian matrix of the system (2.3) at the equilibrium point E5 is:
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* ays ax
XZ (_1 + . 2) - *
_ (m+x3) m+x;
]Ez - bmy? bx} 8 )
(m+x3)? m+x5

det(Jg;) = mX’é V(b +3+8m)2 —4ah(b+38) >0, and the trace of Jg;is tr(Jg;) =8+

+x5
*2_(14b—m—2x}) < 0. Therefore, if § + —2— (1 +b — m — 2x3) < 0, the equilibrium
m+x} m+x5
point E; is asymptotically stable, if § + m’fx* (1+Db—m—2x3) >0, the equilibrium point
2

E; is unstable and if 6§ + %(1 +b —m — 2x3) = 0, which implies that the equilibrium
2

point E is either a weak focus or a center as the eigenvalues of the Jacobian matrix Jg; are
purely imaginary.

d) The Jacobian matrix of the system (2.3) at the equilibrium point E* is:

" ay”* ax*
o = X (_1 + (m+x*)2) T (m+x")
E* — bmy* bx*
(m+x*)2 m+x* +8
_ 2
det(Jg) = — (bHo-om)” g, Thus, the equilibrium point E*is a saddle point.
b+3+ém
The Jacobian matrix of the system (2.3) at the equilibrium point E; is:
ays axs
_ X3 (_1 + (m+X3)2) o (m+x3)
]E3 - bmy; bxs i
(m+x3)2 m+xs
det(Jg,) = — m’jfx J (b + 8+ 8m)2 — 4ah(b + &) < 0. Thus, the point E; is a saddle point.
3

The Jacobian matrix of the system (2.3) at the equilibrium point E, is:

ays aXy
_ X4 (_1 + (m+X4)2) B (m+x4)
]E4 - bmy, bx, 16
(m+x,4)2 m+x,
det(Jg,) = ——2—/(b+ 3 + 8m)2 — 4ah(b + &) < 0. Thus, the point E, is a saddle point.

m+Xy,

e) The Jacobian matrix of the system (2.3) at the equilibrium point E is

s(_ ay _ &
o X( 1+ (m+§)2) (m+X)
JE= bmy bx :

(m+X)2 m+x

det(Jg) = 0 implies that the point E is degenerate singularity and may has complicated properties.

It has been proved in the theorem 3.1 that the unique interior equilibrium point E is a
degenerate singularity and hence may have complicated properties. Now, we discuss the behavior
of interior equilibrium point E.

Theorem 3.2

If the unique interior equilibrium point E exists, it is:
a) a saddle node whenever a,, + ,, # 0.
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2
__Y3070171 +

b) a cusp of codimension 2 whenever a;q + B, = 0,04005¢ + 0g1B,, — 01084
1010

+ # 0.
01 Bll

a

Oo1
Oq

0 and 2(120 -

Proof: Consider 8 = x — X, § =y —y. This transformation shifts the equilibrium point E of
the system (2.3) to the origin and for the sake of convenience denote X as x and ¥ as y, the system
(2.3) can be rewritten as:

d
d_)t( = a30X + Qo1 + GzoX* 01Xy + 0** (%),

dy _

(3.4)
at BioX + Bo1y + Baox*+B11xy + 03* (x,y),

bmx ax m(1-X) am

Whereaw:—m » Qo1 = Ty Az = —1 (m+x)2 ' 11:_W’61°:
bm(1-X) _ bx _ _bm(l—)_() _ bm 3+ . .
e Bo1 = e + 6, By = At Bi1 = 2 and o°* (x,y) are the terms involving

order three and greater.

If oy9 + Bo1 # 0, then tr(Jg) # 0 but det(Jg) = 0. Hence E is a saddle node. Further, tr(Jg) = 0,
whenever oy, + o1 = 0. Now, on using the transformation y; = X, y, = a10X + o1y With the
parametric condition det(Jg) = 0, the system (3.4) reduces to the following system

dys _ —_— 2 | = 3+
at = Y2 T 2oyi + @11y1y2 +0 (Y1, ¥2), (35)
% _ 2 + + 3+( ) '
FTa B20y1 + B11y1y2 + 07 (y1,¥2),

where:

_ A11%10 —— _ %11 n A10" K11 T _

O = Qpg — o 01 = 2ot B2o = 10020 + Ag1B20 — %10B11 T ag Bi1 =B11 +

Q10011

o1

On using the transformation z; = y; — %a_ny%, Z, =y, + 0oy, the system (3.5) reduces to

gz - z1 + 0%% (24, 2),

dt

2, o o I - (3.6)
G Booz1 + (2020 + B11)Z2 + 0°7 (24, 22).

Finally, using the transformation X = z;, Y = z, + 03%(z;,2,), the system (3.6) reduces to

X_y

S (3.7)
&Y _ e v2. (o0 LB 3+ '
o = B20X? + (Zagg + B1a )XY + 0¥ (X, ).

If Byo # 0 and 2050 + B1; # 0, the system (3.7) is a cusp of codimension 2 at the origin in XY
plane, i.e. E in xy-plane is a cusp of codimension 2. These conditions are known as non-degeneracy
condition of a cusp of codimension 2.

4. Bifurcation Analysis

In this section, we discuss the bifurcations, which occur in the system (2.3). In previous section,
it is shown that for certain parametric conditions, some of the equilibrium points may be hyperbolic
or degenerate singularities, and hence, there is a possibility of bifurcation.

4.1 Hopf Bifurcation
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In Theorem 3.1, it is proved that the interior equilibrium point E; is always a saddle point
while E3, is a weak focus or a center if &+ m’fx* (1+Db—m—2x3) = 0. A Hopf bifurcation
2
occurs where a periodic orbit is created as the stability of the equilibrium point E3, loses.

Theorem 4.1
The system (2.3) undergoes a hopf bifurcation with respect to bifurcation parameter & around the

f *x X2 _ _ *\ _ .
point E5, if & + m— (1+b—-—m-2x;) =0 and:

1) an unstable limit cycle arises around the point E3, if (a,b,m,h,8) € Hy,
2) astable limit cycle arises E3, if (a,b,m,h,8) € Hj,

Proof: If & be the bifurcation parameter, then threshold magnitude &= 8™ exist, which satisfies
det(Jg;)> 0 and tr(Jg;)= 0 and hence both the eigenvalue of the system (2.3) will be purely
imaginary. Also:

EIC) .

=1+

*

( 5m (Zah(b +38) +bm(b + &+ dm) + bm,/(b + 5 + dm)2 — 4ah(b + 8))
2x; +—>
2

m+x; 2(b +8)2/(b + 8 + 3m)2 — 4ah(b + d)

=0

which is the transversality condition of the hopf bifurcation. This guarantees the existence of hopf
bifurcation (see, L.Perko [21]).

Now, to study the stability of limit cycle we compute the first Lyapunov number o at interior
equilibrium point E5(x3,y3) of the system (2.3) using the procedure as given in L.Perko [21].
Letx =u —x3, y = v — y;. Then the system (2.3), in the vicinity of the origin, can be written as:

du
< = 10U +agyvF aov2i+ agoud+ ay ulv+aguvi+ag;ve +P(u,v),
dv
2 = 1o + by v+ byou?+ by uvtby, v+ byg ud+ byyu?vtb uvZ+ bz v3 + Q(u, v).
where:
- o * ay; _ 2 amy; am
ap =x(-1+ ap=——> ax= (-1 a=-— gy =
10 2 ( (m+x3)? )’ 01 m+x;’ 20 ( (m+x3)3 )’ u (m+x3)?’ 02
_ amy _ am bmy; bx; IR
0, azp=———== ,au=——=, a1, =0, ay3=0, byy =——=, by, = +46 byo =
4 30 (m+x§)4 1 21 (m+x;)3’ 12 ) 03 ) 10 (m+x;)2’ 01 m+x; ’ 20
bmy; bm bmy; bm
- =——=, by =0,b3g =—""25 byy=———=, b1, =0, by3=0
(m+x;)3' 11 (m+x;)2’ 02 ' Y30 (m+x;)4 21 (m+x;)3’ 12 4 03 4

P(u,v) = Xi%j=aaij u'v/ and Q(u,v) = X5, by u'v/.

Hence the first Lyapunov number ¢ for the planer system is:

3n

o= —T
2A 2a01

{[ a1 bio(afy + as1 by + agz b11)+asg aot (b1 + azobs1 + ay1boz)

+bfy(a11 ane +2ag; boz) — 2a19 bio (b§2 — Az A02) — a§1(2az0 byo + b1y byp)
+( @ b1o—2afo) (11 bop — a11 a20)] —(aio + @01 b10)[3(b1g b3 — Aoy Az0) + 2 ago (azs+ byy)

+(bwas; — ae b21)1},
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where:

m+

A= [(b+5 + 6m)Z — 4ah(b + 5).
2

Thus, the subcritical hopf bifurcation surface of the system (2.3) is:

b &m (b4+8+6m)?

H; = {(a,b,m,h,8):6 >0,m< 1 +§'T <h< 22(655) 1.
Similarly, supercritical hopf bifurcation surface of the system (2.3) is:
. . b &m (b458+8m)?
H, = {(a,b,m,h,&) :0<0m<1 +8 T <h <—4a(b+5) }

4.2 Transcritical Bifurcation

In Lemma 3.1, it is proved that the system (2.3) has always only one axial equilibrium point E;.
In Theorem 3.1, it is proved that the axial equilibrium point E;is an unstable hyperbolic node,
if ah < 6m, and a saddle, if ah > 8m. If ah = 8m, one eigenvalue of the Jacobian matrix Jg_ is
zero and other is positive and also the interior equilibrium point E] coincides with the axial
equilibrium point E;, whenever b + 6 — dm > 0. Thus, there is a chance of bifurcation around the
axial equilibrium point E;.

Here, Sotomayor’s theorem has been applied to ensure that the system undergoes transcritical
bifurcation at the equilibrium point E;.

Theorem 4.2
The system (2.3) undergoes a transcritical bifurcation, if both conditions ah = dmandb + 6 —
dm = 0 hold.

Proof: Since det( Jg,) = 0, whenever if ah = 8m. Thus, one eigenvalue of the Jacobian matrix
Jg, is zero. Suppose v and w are the eigenvectors of the Jacobian matrix Jg and ]Elcorresponding
to zero eigenvalue respectively. And are given by,

1
_ . _1
V—[ bh], W_[O].

"~ 82m

Then, we have:

WTFs(Ey, 8lt) = 0,

WT|DF5(Ey, 8l*)v| = =,

WT[D2F(E,, 81 (v,v)] = i (b + & — dm) # as either (b +8 —dm) > 0 or (b + & — dm) < 0,
Where:

1 2ay , 2abh
0 — 0 —-2+—=+
) _ slec] . _ m? §2m?2
Fs(Eq, 81*) = [%] ; DFs(Ey,8*) = b ; D2F(E,, 8IT) = —2by | 2b%h
8 aslte] mZ = §2m2

Thus, the transversality conditions for transcritical bifurcation are satisfied.

4.3 Saddle-Node Bifurcation
From Lemma 3.1, we have ifm < 1 + g, the system (2.3) has two positive interior equilibrium
(b458+8m)?

— and these two interior equilibrium points coincide with
4a(b+5)

points E and E3, if %m <h<
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each other and a unique interior equilibrium point E is obtained, whenever %m <h= %.
2

Also, the system (2.3) has no positive interior equilibrium points, if h>ajj(+i';). The

annihilation of equilibrium is may be due to the occurrence of saddle-node bifurcation for interior
equilibrium points, which takes place, when the harvesting parameter h crosses the critical
RSN — (b+58+3m)?
4a(b+5)
undergoes to saddle-node bifurcation, h is taken as bifurcation parameter.

valueh = . Sotomayor’s theorem has been used to ensure that the system (2.3)

Theorem 4.3
The system (2.3) undergoes a saddle-node bifurcation with respect to the bifurcation parameter
— 2 X
h around the equilibrium point Eifm < 1+ 222 < h = &M g £ (14 b—m - 2%) +
§ a 4a(b+6) m+X

6 <0.

Proof: Since det(Jg) = 0, therefore one eigenvalue of the Jacobian matrix Jg is zero. Further,
If tr(Jg) < 0, then other eigenvalue has negative real part. Suppose v and w be the eigenvectors
corresponding to zero eigenvalue matrix of Jg and ]% respectively, and are given by,

1 1
V= [1—m—2>‘<] : W= [—a(l—m—z)_()]
a bm(1-X)
Now we have,
WIREN) = o
TN2R(F RISV _ 2% 4bm
w [D F(E'h )(V'V)] ~  m+Xx  b+d+dm
Where:
_ 2amy _2m(1—m—2)‘()
TSN _ [ 0 1. n2n(E wISNIY _ (m+%)3 (m+x)2
Fh(E’h )_ [—1] D F(E’h )_ _ 2bmy | 2bm(1-m-2X)
(m+%)3 a(m+X)2

Thus, the transversality conditions for saddle-node bifurcation are satisfied. The above equation
discussion can be summarized as,
The biological interpretation of the saddle node bifurcation is that when the rate of harvesting is

more than the critical harvesting rate hSN | then the prey species goes to extinction, which drives
to extinction the predator species. However, the both prey and predator species always coexist in

the form of a positive equilibrium for certain choices of initial values, whenever 0 < h < SN,
4.4 Bogdanov-Taken Bifurcation

Theorem (4.3) confirms that the system (2.3) undergoes a saddle-node bifurcation at the
equilibrium point E if exist, whenever det(Jg) = 0 and tr(Jg) # 0. Consider the case when tr(Jg)
is also zero. These two parametric conditions imply that the Jacobian matrix Jg has a doubled zero
eigenvalue. Thus, here is a chance of co-dimension 2 bifurcations (Bogdanov-Takens bifurcation).
In theorem 3.2, it is shown that the equilibrium point E is a cusp of co-dimension 2 whenever:

L2+ by, # 0.

o1

Now, we consider § and h as the bifurcation parameter and reduce the system (2.3) into normal
form of the Bogdanov-Takens bifurcation by employing a series of C* change of coordinates in a
small domain of (0, 0).

ajqqa

2
1011
aigdzo + ag1byg —aiebig — T # 0 and 2a,, —
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Theorem 4.4
The system (2.3) undergoes a Bogdanov-Takens bifurcation parameters 6 and h around the
equilibrium pointE, if exist whenever —>— — — 2™ __ 1 § =0, a,9a0 + ag1b20 — a1ob11 —

(m+x) (b+8)(m+X)

2
al:ﬁ # 0and 2a,5 — alalam + by; # 0. Moreover three bifurcation curves in A1A2 plane exist and
01 01

through the B-T point and they are given by,

Saddle-node curve: SN= {(A1,242): u, (A4,2;) = 03,
Hopf bifurcation curve: H= {(A4,,): H2(7\1J7\2)-J— =1, A, 22), 1, (A4, 25) < 03,

Homoclinic bifurcation curve: HL ={(A;,1,): uz(xl,xz)—sf—i_i —p, (A, A9), 1, (Mg, A) < 03,

Proof: Suppose the bifurcation parameter ¢ and h vary in a small domain of Bogdanov-Takens
point (in brief, BT-point) (hy ,By), and let (hy +2A; ,80 + A;) be a point of neighborhood of the
BT-point (hy ,6,) where A4, A,are small. Thus, the system (2.3) reduces to:

——x(l—x)— axy

d b
d—}t,:m)i};*'(so"')q)y_ho -

The system (4.1) is C* smooth with respect to the variables x,y in a small neighborhood
of (hg, 8o).

(4.1)

Define x; = x — X, X, =y — ¥, system (4.1) reduces to:

dx
d_tl = aj0X1 + A91Xp + Az0X] + a11X1X, + +Ry(Xq, X3), 4.2)
ax, .
d_ = bgg + b1gXs + bo1Xz + byoxf + by1xiX, + Ry (x4, Xp),
__ bmx _ _ _ax - _ m(1-%) —_am — AT —
where a;, = T e m’ gy = T Az =—1+ i a; = 7 boo = MV — Ay,
=20, = and Ry, R, are the power series in (x4, x,) with powers xix) satisfying

a(m+x)’ 11~ (m+Xx)?2

Let us introduce the affine transformation y; = x4, y, = ax; + bx, in the system (4.2), we get:

d
Y1 =y, + &0Myi + &1 Dy1y2 + Ri(y1,¥2), 43)
d .
L =Noo(D) + ‘110(7\)}’1 +M01Wyz + N20My5 + M1 Dy1y2 + Ry (1, ¥2),
where &0(A) = azo — 211210 E11 () =—, ‘100(7\) =ag1bgo, N10(A) = —apsAq, o1 = Ay,

ay1d10+ag1bya

M2o = a1pdz0 T ao1b20 - 3_01(310311 + 301b11), N1 = and Ry, R, are the power

series in (yq,y,) with powers y11y1'2 satisfying i +j = 3.

ao1

Consider the C* change of coordinates in the small neighborhood of (0,0):z; =y, — %511)’%,
7y =y, + &0y7 , Which transform the system (4.3) into:

dz =
d_tl =12, + R1(21,22),,
de _ 1 ) ) R=
7 = Moo T NyoZ1 ¥ Mp1Z2 + (5&111110 ~Mg1Sz0 T T]20) z; + ( oo T T]11)2122 + Ra(21,27).

(4.4)
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Then, the system (4.4) reduces to:

duy

d Uz,
du, sy 2 ()
—= =Yoo + Yious + Yoquz + Yyouf + Yiqugup + Fy(ug) + uzFap(ug) +uzFz(ug, up),

dt
1

where Yoo = Moo, Y10 = N10, Yo1 = No1, Y20 = EEn‘ho —Mo1§20 + M20, Y11 = 2820 + N11

F,and F, are the power series in w; with powers wfl and wfz and Fsis a power series in and wy

and w,, involves terms like wiwy) satisfying k; > 3,k, > 2andi+j > 1.

We have Y,, # 0 and Y;; # 0. Applying the Malgrange preparation theorem, one has:
Yoo + Yiouy + Yoouf + Fy(uy) = (111 + T, + —) By (ug, ),

with B;(0,A) = Y, and B; is a power series of w; Whose coefficients depend on parameters
(}\er2)'

Let:
_ _ U2 — .
Xj=u,X, = Mo and dt = ,/Y,,dt, then the system (4.5) reduces to:
aXy _
dt X2,
4%z _ Yoo | Yio Yo1 2, Yu
o = et Xt X H X FEXX + P(Xy, X2, ),
(4.6)
where P(Xy, X, 0) is a power series in (Xy, X,) with powers X}X), satisfying i +j > 3 withj > 2.
Applying the parameter dependent affine transformation Y; = X; + \;10 Y, = X, in the system
20
(4.6) and using Taylor series expansion, we get:
av, _
dt =~ 2
dy
_2 =1, AL 2) + 1, (A, A) Yo + Y + (e + a) Y1 Y, + Q(Yq, Yo, 1),
(4.7)
_ Yoo Yio _ Yo1  Yi1Ygo _ Y _
where p, (A4,2;) = Yo W2 n,(A, ) = Nio —zYZZ , €+ ad) = T a(0) =0 and

Q(X4,X,,0) is a power series in (Y1, Y,) with powers Y{Y; satisfying i +j = 3 with j > 2. The
system (4.7) can be rewritten as:

av _
— 12

de dr (4.8)
—Z =1, (AL 2) + (A, A Y, + Y+ €YY, + S(Yq, Yo, ),

where S(Y;,Y,, )|s a power series in Yy, Y, u,, i,with powers YlYéuluz satisfyingi+j+k+1>
4andi+j=>3.

As Rank[ (i “2)] 2, system (4.8) is locally topologically equivalent to the normal form of the

d(A1A2)
Bogdanov-Takens bifurcation as given below:

dz,

a = Lo

d22 (4.9)

—Z2 =, A, A) + 1, (A, A)Zy + ZF + 21 Z,,

5. Numerical Simulations
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1) Ifa=0.7,b=08,6 =0.01,m=2h=0.2. Then the system (2.3) has two positive
interior equilibrium point E{(x1yi) = (0.787085, 0.847733) and
E;(x3y;) = (0.188224,2.53764) and one prey pre equilibrium E; = (0,20). If h = hlSNl =
0.303748, The two interior equilibrium points coincide and the system (2.3) has only one
equilibrium point E(x,¥) = (0.487654,1.82077). If h = 0.4 the system (2.3) has no interior
equilibrium point (see Figure 1a). The saddle node bifurcation diagram has been depicted in the
Figures 1b, 1c and the phase portrait diagram for h = h!S¥! = 0.303748 is depicted in Figure 1d in
which the equilibrium point E is stable for the region lie between Magenta color trajectories while
unstable for the remaining region.

sy

i )
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0 L Il 1 1 0_0\\ TR T T T T N T T T T [ T T T M}
00 02 04 06 08 10 000 005 010 015 020 025 030 035
X h
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(c :
25 Stable ) 25k
20¢ ] 20
o N .
~ hls: i
Q.d 15 - 15
~10f 10
03¢ Unstable ] 05t
00 |||l||||mw||_||||||||||_|||||||||_ Olo:"'llll|lll||||||||
000 005 010 015 020 025 030 035 0.0 02 04 06 08 10
h X

Fig. 1 Diagram (a) shows how the numbers of interior equilibrium point’s change with h while
keeping other parameters fixed. The red curve is prey nullcline and Blue curve (h = 2), green curve
(h =0.303748) and black curve (h = 0.4) are predator nullcline. (b) and (c) are bifurcation diagrams
for the threshold value of the harvesting parameter (h*" = 0.303748). (d) Phase portrait diagram of
the system (2.3) when h = 0.303748. The other fixed parametersarea=0.7; b=0.8;d=0.01; m =
2.

2) If a=0.7,b=10.8,6=0.01,m = 2,h=0.2. Then the point E] (xjyj) is a saddle point
and the point E;(x3y; ) is stable (see Figure 2a). If & = s = 0.02737585, the interior
equilibrium point are Ej(x1y;) = (0.805989,0.777705) and E5(x3y;) = (0.127836,2.65117)
and the system undergoes to a hopf bifurcation at the point E; (x3y3) and since the first Lyapunove
number ¢ = —22.1349mx, a stable limit cycle arises around the point E5(x3y>) (see Figure 2b). If
8 = 0.03976, the interior equilibrium point areEj(xjy;) = (0.817172,0.735796), E5(X3y;) =
(0.0881339,2.72014) and a homoclinic loop is created around E3 (see Fig.2c).
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Fig. 2 Diagram (a) is phase portrait diagram of the system (2.3) for fixed parameters a = 0.7; b =
0.8; m=2.h =0:2; d = 0.01. The interior equilibrium point E5 is an asymptotically stable. (b) a
stable limit cycle bifurcates through Hopf bifurcation around the equilibrium point E; for d =
0.02737585. (c) Limit cycle collides with the saddle point E; and a homoclinic loop arises around
E;.

3) Ifa=0.7,b=01,m=3,h=04,6 =0.0933333. Then ah=6m and b+ 8 — ém =
—0.0866667 the system (2.3) has no interior equilibrium point. The phase portrait diagram has
been depicted in Figure 3a. If b = 0.8,ah = 6m,b + § — dm = 0.613333 and the system (2.3) has
one positive interior equilibrium point. The phase portrait diagram has been depicted in Figure 3b.

Fig. 3 (a) Phase portrait diagram for the parametersa=0.7; b=0.1; m=3; h =0.4; d = 0.093333.
No interior equilibrium point exists. (b) Phase portrait diagram for the parameters b = 0.8. A unique
interior equilibrium point is a saddle.
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6. Results and Discussion

A real world problem is modelled using non-linear mathematical equations to describe the
process with the help of a suitable number of variables, parameters, and so on. In this paper, we
have analysed a non-linear bidimensional predator-prey model with Holling type Il functional
response in the presence of additional food to predator and constant yield predator harvesting. The
qualitative analysis of proposed system shows that the harvesting rate and additional food
coefficient affects much on the system. It is shown that the system (2.3) have only one axial
equilibrium point while the positive interior equilibrium point changes from zero to two, depends
upon the parametric conditions. These conditions are shown in Lemma 3.1 and depicted
graphically in Figure la. In Theorem 3.1 a it is shown that axial equilibrium point is either an
unstable node or a saddle point. If two interior equilibrium points exist, one is always a saddle
point while other is either asymptotically stable or a saddle or a weak focus (or a centre) depends
upon certain parametric conditions, obtained in theorem 3.1c and depicted in Figures 2a and 2b.

It is also shown that the system (2.3) undergoes hopf bifurcation with respect to hopf bifurcation
parameter 8, function of additional food coefficient A. The first Liapanov number is calculated to
study the stability of the limit cycle. In example 2 we calculated the Liapunov number numerically
which is negative and hence a stable limit cycle arises around the equilibrium point, depicted in
Figure 2b. An homoclinic loop is also obtained numerically in Figure 2c. The parametric conditions
are obtained under which the system (2.3) enters a Transcritical bifurcation. The phase portrait
diagrams of the system (2.3) for these parametric conditions are sketched in Figures 3a and 3b. A
parametric region where one of the coexisting equilibrium is saddle and other is stable which gives
the existence of a saddle-node bifurcation is obtained. The saddle-node bifurcation diagram is
shown in Figures 1b, 1c and the parametric region lying between the Magenta colour trajectories of
Figure 1d. The ecological significance of saddle-node and transcritical bifurcation gives the
maximum threshold for continuous harvesting and providing additional food without the extinction
risk of the predator species.
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