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Abstract 
The major challenge in studying the behavior of a viral infection is the variation that occurs in the 
level of infection. In this paper, a multi-infected group age-structured epidemic model has been 
considered. The existence and uniqueness of the nonnegative solution in this model has been 
proved. Threshold results determining the existence of endemic states have been established under 
various conditions. The local stability of the steady states have been discussed in this article. 
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1. Introduction 

Viral disease is one of the most common disease at present. The number of diseases transmitted 
by viruses are growing at a rapid rate. Several research works across the globe is aimed at 
investigating the probable reasons behind the disease. In a certain study [1], the temporal 
progression of the clinical, radiological and virological changes in community outbreak of severe 
acute respiratory syndrome (SARS) was examined. The study results claimed that worsening in the 
patient condition is not related to uncontrolled viral replication but may be related to 
immunopathological damage caused by the virus. Viral level often determine the ability of 
transmission for some diseases such as malaria and fever, where the infectivity depends on the 
number of parasites or viral loads in infected hosts or vectors [2],[3]. There is a huge volume of 
research on the viral action of Human Immunodeficiency Virus. A differential infectivity model 
was proposed in [4],[5],[6]. Furthermore, [5] subdivided the infected population into n  subgroups, 

. Upon infection, an individual enters subgroup 1 2 nSI I I R j  with probability jp  and stays in 

that group until it is inactive in transmission, where 
1

1
n

j jp  . Highly active antiretroviral 

therapy (HAART) is currently one of the most important component for treating HIV-1 infection. 
A study on the efficacy of HAART in suppression of HIV-1 has been examined in [7]. It was 
observed that the rate of virological failure of HAART was highly documented among the SWISS 
cohort group where the study was conducted, but the chances of clinical progression was low even 
in patients with viral rebound.  

While ODE models are often used when the population structures (age, sex, etc.) are neglected, 
there are many cases in which incorporating one or more of these structures into the model may 
provide additional and important information which may be helpful in the understanding of the 
disease dynamics. The incorporation of age-dependent demographical and/or epidemiological
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parameters usually leads to a system of first-order partial differential equations with nonlocal 
boundary conditions. In articles like [8], the author has considered the mixing strategies and 
emphasized the role played by proportionate mixing through an age structured model. The authors 
also developed expression in terms of preference function for general solution of the framework. In 
this paper, we study a more general age-structured  model that includes multiple 

infected-groups of human populations. We need to specify a general assumption that ensures the 
uniqueness of the positive equilibrium as well as the local stability result, which follows 
subsequently.  

1 2 nSI I I R

The paper has been organized as follows. In Section 2, we describe the multi-infected-group 
model and the reduced system under the assumption that the total population has reached its stable 
age distribution. In Section 3, we find the 0C  semigroup which has been generated by the system 

of linear age-structured model. Furthermore, we discussed the existence and uniqueness of 
nonnegative solution. Our main theorems on the existence of steady states are given in Section 4. 
The main results about the stability analysis of the equilibrium solutions have been presented in 
Section 5.        

 
2.  The Model 

Let us define the state of stress at a point in the stationary frame  S0,  by the following stress 
tensor: (Fig.1) We subdivide a closed population into 2n   compartments containing susceptible, 

 infective and recovered individuals, which means that susceptible individuals become the 
infected individuals with differential infectivity, and become the recovered individuals with 
permanent immunity. Corresponding to the differential infectivity, the infectious individuals are 
divided into n  classes, 

n

1I , 2I , ,  nI . We assume that the population is in a stationary 

demographic state. Let  (  denotes the highest age attained by the individuals in 

the population) be the density with respect to age of the total number of individuals, under our 
assumptions,  satisfies:  

( )N a 0  mra  mr

( )N a

                                          
0

( ) exp( ( ) )
a

N a N d                                                  (2.1) 

where ( )a  denotes the instantaneous death rate at age  of the population, the constant  is the 

total size of the population and 

a N

  is the crude death rate, we assume that ( )a  is nonnegative, 

locally integrable on [0 , and satisfies:  )mr

                                                  
0

( )
mr

d      

The crude death rate is determined such that:  

                                                  
0

( ) 1
mr

f a da    

where 
0

( ) exp( ( ) )
a

f a d     is the survival function which is the proportion of individuals 

who survive to age a . Then we have the relation:  

                                                    ( ) ( )N a Nf a                                                            (2.2) 

Next let , ( )S a t ( )jI a t ,  and ( 1 2j n    ) )(R a t  be the densities of respectively the 

susceptible , infected population in the j th class and immune population at time t  of age . 
Hence, we have:  

a

                                                                              (2.3) 
1

( ) ( ) ( ) ( )
n

j
j

N a S a t I a t R a t


      

Let j  be the recovery rate in the class jI  and jp  be the probability that an individual enter the 
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class jI  ( ). Let 
1

1
n

jj
p


 (j a b)   be the age-dependent transmission coefficient of class jI , 

that is, the probability that a susceptible person of age  meets an infectious person of age b  in the 
class 

a

jI  and becomes infective, per unit of time. Define the force of infectious of class jI  by 

(a t)j   given as:  

0
( )

mr
a t ( ) ( )j j ja I dt                                                                                                 (2.4) 

Moreover we assume that the death rate of the population is not affected by the presence of the 
disease and hence depend only on time. Under the above assumption, the spread of the disease can 
be described by the system of partial differential equations:  

 
        ( ) ( ) ( )) (t a S a t a t S a t( ( )a )  

                                                                      (2.5 1 )  

 1 1 1 1( ) ( ) ( ) ( ) ( ( ) ( )t a )I a t p a a ta t S a t I   
                                                        (2.5 )  2

2 2 2 2( ) ( ) ( ) ( ( ) ( )t a ( ) )I a t p a a ta t S a t I   
                                                      (2.5  ) 3

                  
( ) ( ) ( ) ( ( ) ( )n n n nt a ( ) )I a t p a a ta t S a t I   
                                                    (2.5 ) 1n

1
( )j j( ) ( ) ( ) (

n

t a j
),R a t a R a  

      I a t


t                                                         (2.5 ) 2n

where: 

                                  
1

n

jj
a t 


( )a t  ( )   

with boundary conditions: 

                                               (2.6) (0 ) 0( 1 (0 ) 0S t N j R t      (0 )jI t  )n  

Consider the fraction of susceptible, class jI  and immune population at age  and time t :  a

 
( )

(
t( )

( ) j

S a t
i

N a

( )
( ) ( ) 1 ) ( )

( ) ( )
jI a R a t

s a t a t j n r a t
N a N a

 
  

2(2 5 )n

          

Then the system -  can be written to a simpler form:  1(2 5 )
 

( )a t s      ( ) ( ) ( )t a s a t a t 
                                                                                           (2.7 1 ) 

1 1 ( )p a t s 1( ) ( ) ( ) (t a i a t a t i a t1 )  
                                                            (2.7 ) 2

2 2 ( )p a t 2 2 a t( ) ( ) ( ) ( )t a i a t s a t i  
                                                           (2.7 ) 3

  
( ) ( ) ( )n np a t ( ) ( )t a i a t s a t in n a t  
                                                       (2.7 ) 1n

1

n

j jj
i


 ( ) ( ) ( )t a r a t a t 

                                                                       (2.7 ) 2n

  (0 ) 1 ) (00, 1, 0ji t n rs t     0 ( j   )t                                              (2.8) 

where: 

10
( ) ( ( )) ( ) ( ) ( )

mr n

j
a t t N d N a Nf a    


    

1
( ) 1

n

jj
s a t i a


   

( )j ja i  

( ) ( )t r a t  

               (2.9)        

                                                                            (2.10) 

In the following, we mainly consider the system (2.7 1 -) 2(2 7 )n  with the initial conditions:  

                              (2.11) 0 0( 0)j ja i  0 ( 0) ( ) ( )( 1 ( 0) ( )s a s a i a j r a r a       )n 
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3.  Existence and Uniqueness of Nonnegative Solution 

In this section we shall show that the initial-boundary value problem - , (2.8), 

(2.11) has a unique solution. First we note that it suffices to consider the system in terms of only 
,  since, once these functions are known, r a

1(2 7 )

( )t

2(2 7 )n

( )s a t ( ) ( 1ji a t j n    )   can be obtained by 

1
1 ( )

n

jj
s a t i


    ( )r a t (a t ) .  

First we introduce a new variable  by s ( ) ( )s a t s a t 1    . Then we obtain the new system for 

, and :  (s a t ) )( ) ( 1ji a t j n   

    ( ) ( ) ( )( ( ) 1)t a s a t a t s a t 
                                                                                  (3.1 1 )  

1 1 1 1( ) ( ) ( )( ( ) 1) (t a i a t p a t s a t i a t 
         )                                  (3.1 2 ) 

2 2 2 2( ) ( ) ( )( ( ) 1) (t a i a t p a t s a t i a t  
         )                                                    (3.1 )  3

  

            ( ) ( ) ( )( ( ) 1) (n n n nt a i a t p a t s a t i a t  
         )                                                   (3.1 1n ) 

(0 ) 0 (0 ) 0( 1 )js t i t j n         
 

Let us consider the initial-boundary value problem described by the system (3.1 1 -  as 

an abstract Cauchy problem on the Banach space 

) 1(3 1 )n
1 1(0 ) (0 )m mL r L r   X   1(0 )mL r  with 

norm 
1

11

n

j
x x




   for , where 1 2( ) ( ( ) ( )x a x a x a   1( ))T

nx a X
1
  is the ordinary norm 

of 1(0 )mL r . Let A  be a linear operator defined by:  

 

1

2
1 2

1
1

( )

( )
( )

( )( )

( )
( )n

n n

dx a

da
dx a

x a
Ax a da

dx a
x a

da






  
 
  
 
 
 
  
 



                                                                              (3.2) 

 1 2 1( ) ( ( ) ( ) ( )) ( )T
nx a x a x a x a D A       

where Tp  is the transpose of the vector p  and the domain  is given as:  ( )D A

 ( ) { is absolutely continuous on [0 ) (0) (0 0 0) }T
i mD A x x r x       X 

)m

 

Suppose that ( ) ((0 ) (0 )j ma b L r r      . We define a nonlinear operator  by:  F  X X

                                                      (3.3) 

1 1
1

1 1 1
1

1 1
1

( )( )(1 ( ))

( )( )(1 ( ))
( )( )

( )( )(1 ( ))

n

j j
j

n

j j
j

n

n j j
j

Q x a x a

p Q x a x a
Fx a x

p Q x a x a










 
  

 
 

 
 
 
 
  
 







X



  
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where jQ  is a bound linear operator on 1(0 )mL r , ( 1 )nj     given by:  

                            
0

( )( ) ( ) ( ) ( )
mr

j jQ f a a N f d                                                       (3.4) 

Note that (0 )j mQ f L r   for 1(0 )mf L r 

1( ( ) ( )s t i t    

13 1 )n

 and hence the nonlinear operator  is defined on 

the whole space X . Let . Then we can rewrite the initial-

boundary value problem -(  as the abstract semilinear initial value problem in :  

F

( )u t

1(3 1 )
( ))T

ni t   X

X

                          0( ) ( ) ( ( )) (0)
d

u t Au t F u t u u
dt

    X                                                (3.5) 

where , 
00 0

1( ) ( ( ) ( ) ( ))T
nu a a i a i as     0 0 0( ) ( ) 1a s as   . It is easily seen that the operator A  is 

the infinitesimal generator of - semigroup ,  and  is continuously Frechet 

differentiable on X . Then for each 

0C
0u

( )T t t 0 F

X , there exists a maximal interval of existence [0 0 )t , 

and a unique continuous mild solution  from 0( )t u t u  [0 0 )t  to  such that:  X

                  0 0 0

0
( ) ( ) ( ) ( ( ))

t
u t u T t u T t F u u d                                                       (3.6) 

for all  and either  or 0[0 )t t  0t   0t    and 
0

0lim ( )
t t

u t u
   . Moreover, if 

, then u t  for 0u D ( )A 0( )u D  ( )A 0t t0    and the function  is continuously 

differentiable and satisfies (3.5) on 
0( )t u t u 

0[0 )t  (see [9], , Proposition 4.16).  194P

Since , from above discussion we obtain that the solution  ( ) ( )(1 ( )S a t Nf a s a t    )

1( ( ) ( ) ( ) ( ))T
nS a t I a t I a t R a t        , 0(0 )t t   is continuously differentiable and satisfies (2.5)-

(2.6), where either 0t   0t   or  and  

            
0 1lim ( ( ) ( ) ( ) ( ) )t t nS a t I a t I a t R a t           . 

 From ( ) ( )N a N a t N   , we easily obtain 0t   . Thus we have the following result.  

 
Theorem 3.1 
The abstract Cauchy problem (3.5) has a unique global classical solution on X  with respect to 
initial data .  0 ( )u D A

Therefore, it follows immediately that the initial-boundary value problem (2.5)-(2.6) has a 
unique global classical solution with respect to the initial data. 
 
4.  Existence of Steady States 

Let  be the steady state solution of the set of equations 1( ( ) ( ) ( ))nu s a i a i a       1(2 7 ) -

. It is easy to verify the following:  2 )(2 7n

 
0

( ) exp( ( ) )
a

s a d                                                                                              (4.1 1 )  

1 1 10 0
( ) exp( ( )) ( )exp( ( ) )

a
i a p a d d


                                                   (4.1 ) 2

2 2 20 0
( ) exp( ( )) ( )exp( ( ) )

a
i a p a d d


                                                  (4.1 )  3

                  

0 0
( ) exp( ( )) ( )exp( ( ) )

a

n n ni a p a d d


                                                 (4.1 1n ) 
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where 

    
10

( ) ( ( ) ( )) ( )
mr n

j jj
a a i N d      


                                                                    (4.1 2n ) 

Substituting (4.1  into 2 1) (4 1 )n  2(4 1 )n  and changing the order of integration, we obtain an 

equation for :.  (a )

 
0 0

( ) ( ) ( )exp( ( ) )
mr

a a d


d              

d

                                                        (4.2) 

where: 

 
1

( ) ( ) ( ) ( ) ( )exp( ( ))
m

n r

j j j j j
j

a p a a a N


           


                       (4.3) 

From , it follows that:  2(4 1 )n

 
1

( )a n N i   


    

where: 

 1 11 1
{ , } {n nmax i max i i    

  
      

1
}   

in which 
1

    denote a -norm and a -norm, respectively. Then it follows that L 1L

(0 )mL r 
 

( ) 0a 

 since . It is clear that one solution of (4.2) is 

, which corresponds to the equilibrium state with no disease. In order to investigate a 

nontrivial solution for (4.2), we define a nonlinear operator 

1 )( 1 2i L r j
   (0j m  )n

( )x  in the Banach space 
1(0 )mX L r   with the positive cone { 0 }X X a e          by : 

               
0 0

( )( ) ( ) ( )exp( ( ) )
mr

x a a x x d d x


            X                                (4.4) 

Since the range of   is included in (0 )mL r  , the solutions of (4.2) correspond to fixed points 

of the operator . Observe that the operator    has a positive linear majorant  defined by:  T

                                                                            (4.5) 
0

( )( ) ( ) ( )
mr

Tx a a x d x X       

We summarize the Perron-Frobenius theory for the positive operators in an ordered Banach 

space. Let X  be a real or complex Banach space and let X   be its dual, i.e., the space of all linear 

functionals on X . The value of F X   at X   is denoted by F  . A close subset X   is 

called a cone if the following holds(see [19], P ).  889

 
Definition 4.1 
A positive operator  is called semi-nonsupporting if and only if for every pair ( )T B X

{0}X{0}X F 
 ‚ ‚ , there exists a positive integer (p p F )   such that 

0pF T   . A positive operator ( )T B X  is called nonsupporting if and only if for every pair 

{0} {0}XX F 
 ‚ ‚ , there exists an integer (p p F )   such that 0nF T    for 

all .  n p
The reader may refer to [10],[11] for the proof of the following theorem:  
 
Theorem 4.2 
Let the cone X   be total,  be semi-nonsupporting with respect to ( )T B E X   and let  be a 

pole of the resolvent 

( )r T

( )R T . Then the following hold:  

(1) ,  is a simple pole of the resolvent.  ( ) ( ) {0}r T P T ‚ ( )r T

 21 



Xi-Chao Duan, Xue-Zhi Li, Souvik Bhattacharya & San-Ling Yuan 
 

(2) The eigenspace corresponding to  is one-dimensional and the corresponding eigenvector ( )r T

X   is a nonsupporting point. The relation T   with X   implies that c   for 

some constant .  c
(3) The eigenspace of T  corresponding to  is also a one-dimensional subspace of  ( )r T X   

spanned by a strictly positive functional F X  .  
(4) Assume that X  is a Banach lattice. If ( )T B X  is nonsupporting, then the peripheral 

spectrum of T  consists only of , i.e., ( )r T ( )r T   for ( ) { ( )}T r T  ‚ .  
 
The following comparison theorem is due to [12].  
 
Theorem 4.3  
Suppose that X  is a Banach lattice. Let  and T  be positive operator in S ( )B X .  

(1) If , then .  S T ( ) ( )r S r T
(2) If  and T  are semi-nonsupporting operators, then S S T S T    implies that .  ( ) ( )r S r T
With the above explanations, we are in the perfect shape to investigate the nature of the majorant 
operator T  defined by (4.5). We initiate the process with the following assumption:  
 
Assumption 4.4  
(1)  

 ( ) ((0 ) (0 ))j ma L r r  
 m     



 

(2)  

               (4.6) 
00

lim ( ) ( ) 0 uniformly for ( 1 2 )
mr

j jh
a h a da R j n    


             

where j  is extended by ( )j a 0    for ( 0) ( ma r )    .  

(3) There exist  and a number (1 )l Z l n      with 0mr    and 0   such that  

    ( ) for almost all ( ) (0 ) ( )l a a rm m mr r                                                            (4.7) 

Then we can prove that : 
 
Lemma 4.5  
Under Assumption 4.4, the operator T X  is nonsupporting and compact.  X 
 
Proof  
Define the positive linear functional F X 

  by:  

                                        
0

( ) ( )
mr

F g d         X                                                   (4.8) 

where ( )g   is given by:  

                         ( ) ( ) ( )exp( ( ))
mr

l lg p s N


d                                                    (4.9) 

where the function ( )s   is defined as ( ) 0 (0 ) ( ) [ )m ms r s r mr                 . Hence 

( ) (l a s )     for almost all ( ) (0 ) (0 )m ma r r     ( ) 0g. Since   [0 mr for all )   , the 

functional  is strictly positive and : F
 1F x e Tx e X x X          

Then for any integer n , we have:  
1 nnT x F x F e e      

Therefore we obtain 0nY T x  ,  for every pair 1n  {0}x X  ‚ , , that is, {0}Y X 
 ‚
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T  is nonsupporting. Next observe that : 

0

0
1

( ) ( )

( ) ( )exp( ( ))

m

m m

r

nr r

j j j
j

a h a da

a h p N d


   

     


     

     



  

a

 

1

( ) ( )exp( ( ))
m

nr

j j j
j

a p N d d


      


      

0
1

[ ( ) ( )] ( )exp( ( ))
m m

nr r

j j j j
j

a h a p N d da


        


            

0 0
1

( ) ( )
m m

nr r

m j j
j

Nr a h a d da     



                                                            (4.10) 

In order to prove the compactness of T , we identify the Banach space X  with the subspace of 

 such that 1( )L R 1{ ( ) ) 0 for ( 0) ( mX L R a a r  ( )}      
1( )L R

. Then we can interpret 

 as an operator on  such that T X  is its invariant subspace, so it is sufficient to show that 

the operator T  is compact in . Let 1( )L R K  be a bounded subset of . Then it follows 

immediately that  is also a bounded subset. Observe that : 

1(L R)
( )T K

 

0

( )( ) ( )( ) ( ) ( ) ( )

sup ( ) ( )
m

R R R

Rr

Tx a h Tx a da a h a x d da

x a h a d


a

     

   
 

           

       

  


 

Together with the condition (4.6) and (4.10) it follows that  is an equicontinuous family 

in -norm. Moreover it follows from  that:  

( )T K
1L ( )T K X

 ( )( ) 0
mr

Tx d x K


 
 

       

Thus we can apply the compactness criterion by Frechet-Kolmogorov ([13], ), that is, 

 is relatively compact in . Thus T  is a compact operator. This completes the proof.  

275P

( )T K 1( )L R
 
From Theorem 4.2, it follows that the spectral radius  of operator  is the only positive 

eigenvalue with a positive eigenvector and also an eigenvalue of the dual operator T  with a 
strictly positive eigenfunctional.  

( )r T T


 
Now we can prove the following:  
 

Theorem 4.6 (Threshold results). 
Let  be the spectral radius of the operator T  defined by (4.5). Then the following holds:  ( )r T
(1) If , the only non-negative solution ( ) 1r T  x  of the equation ( )x x   is the trivial solution 

.  0x
(2) If , the equation ( ) 1r T  ( )x x   has at least one non-zero positive solution.  
Subsequently, in order to investigate the uniqueness problem for nontrivial positive fixed points of 
the operator , we introduce the concept of concave operator (see [14]).  
 
Lemma 4.7 [14].  
Suppose that the operator A X  is monotone and concave. If for any X   x X   satisfying 

1 0 1 0 1 1( ( ( )u x u x1 1) 0x 0)          and 0 1t  , there exists ( )x t 0     such 

that:  
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                                          0( )A tx tAx u                                                                        (4.11) 

then A  has at most one positive fixed point.  
 

Here, we can prove the following: 
  

Theorem 4.8  
If for all ( ) [0 ) [0ma r )mr     , the inequality  

                             ( ) ( ) ( ) 0( 1 2j j ja N a j n)                                                 (4.12) 

holds, and , then  has only one positive fixed point.  ( ) 1r T  
 
Proof  
From Lemma 4.7 and Theorem 4.6 (and Definition 4.7 in [19]), it is sufficient to show that under 
condition (4.12), the operator   is a monotone concave operator satisfying the condition (4.10). 
From (4.4) and (4.3) it follows that:  

0 0
( )( ) ( ) ( )exp( ( ) )

mr
x a a x x d


d           

0 0
( )[ (exp( ( ) )]

mr d
a x

d


d d    


      

00 0 0
( )exp( ( ) ) exp( ( ) ) ( )

m
m

rr d
a x d x d a

d

 
 d        



           

0 0 0
( 0) ( )exp( ( ) ) exp( ( ) )

m mr r

ma a r x d x d


               

1 1

[ ( ) ( ) ( ) ( )exp( ( )) ]
m

n n r

j j j j j j
j j

p a N p a N d d


          
 

         

d

 

0 0
1 1

( 0) exp( ( ) )[ ( ) ( ) ( )]
m

n nr

j j j j j
j j

a x d p a N p a


         
 

           

0 0
1

( 0) exp( ( ) ) [ ( ) ( ) ( )]
m

nr

j j j j
j

a x d p a N a


d         


        , 

from which together with condition (4.12) we know that   is a monotonic operator. Next from 
(4.4) and (4.3) we observe that:  

 0 0( ) ( )( ) ( )x u x a x    u  

where  and:  0 1u 

 0 0

0 0

( ) ( ) ( )exp( ( ) )

( ) ( ) ( )exp( ( ) )

m

m

r

r

x g x x d d

x M h x x d d





     

     

 

 

 
 




 

Here : 
 1 2{ sup ( ) sup ( ) sup ( )}nM max ess a b ess a b ess a b            

( )g   is given by (4.9) and ( )h   is defined by:  

 ( ) ( )
mr

h n N d


     

It follows that ( ) 0x   and ( ) 0x   for {0}x X  ‚ . Moreover we obtain:  

0 0 0
( )( ) ( )( ) ( ) ( )exp( ( ) )[exp((1 ) ( ) ) 1]

mr
tx a t x a t a x x d t x d d

 
                  

0 0 0
( ) ( )exp( ( ) )[exp((1 ) ( ) ) 1]

mr
g x x d t x d d

 
             

from which we conclude that   is a concave operator and the condition (4.11) is satisfied by 
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assuming  and :  0 1u 

( 
0 0 0

) ( ) ( )exp( ( ) )[exp((1 ) ( ) ) 1]
mr

x t t g x x d t x d d
 

               

This completes the proof of Theorem 4.8.  
 

We need to look for relationships that could guarantee condition (4.12) We say that if 
( )a N ( )    is continuous and non-increasing as a function of (0 )mr   , then (4.12) holds. In 

the following we will show : 

 

1

0

( ) ( ) ( )

( ) ( ) ( ) ( )exp( ( ))

( ) ( )[1 exp( ( )) ]

1
( ) ( )[1 exp( ( )) ]

( ) ( )[1 exp( ( )) ]

( ) ( )exp(

m

m

m

m

j j j

r

j j j j

r

j j

r

j j j
j

r
j j

j

a N a

a N a N d

a N d

d
a N d

d

a N

a N










     

         

       

       
 

     

  




  

     

    

    


     

 






( ))

0

j mr  

 



 

In particular, condition (4.12) holds if j  is independent of age of infective  , because ( )N   is 

a decreasing function.  
The assumption that ( ) (j a N )    is non-increasing on   implies that the number of age a  

infected by younger individuals is always greater than the number of those infected by older 
individuals. This assumption may not be realistic for some diseases. Here we use the assumption to 
explain the validity of condition (4.12). 
 
5.  Stability Analysis for Equilibrium Solutions 

In order to investigate the local stability of the equilibrium solutions:  

  1 2( ( ) ( ) ( ) ( ))T
ns a i a i a i a      

of (2 , we first rewrite 1 (2 7n   1 11 ) ) 1(2 1 ) (2 7 )n    into equations for small perturbations. Let  

  1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n nt s a a t i a t i a a t i a t i a a t                 s a

11 ) (2 
 

1From , we have:  (2 7 )n
  

( ) ( )t a a t  ( )[ ( ) ( )] ( ) ( )a t a t s a a a t      
                                                           (5.1 1 ) 

1 1 1 1( ) ( )t a a t  [ ( )( ( ) ( )) ( ) ( )] ( )p a t a t s a a a t a t        
                                    (5.1 ) 2

                      
( )t a a t  ( ) [ ( )( ( ) ( )) ( ) ( )] ( )n n n np a t a t s a a a t a t       
                               (5.1 1n ) 

where: 

                           0
1

( ) ( ( ) ( )) ( )

(0 ) 0 (0 ) 0( 1 )

m
nr

j j
j

j

a t a t N d

t t j n

      

 


    

        




 

Therefore we can formulate  as an abstract semilinear problem on the Banach 

space 
1(5 1 ) (5 1 )n   1

X .  
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          1

( )
( ) ( ( )) ( ) ( ( ) ( ) ( ))T

n

dx t
Ax t G x t x t t t t X

dt
                                             (5.2) 

where the generator A  is defined by : 

    1 2 1
1 2 1

( ) ( ) ( )
( )( ) ( ( ) ( ))Tn

n n

dx a dx a dx a
Ax a x a x a

da da da
 

       



                        (5.3) 

with the domain:  
  ( ) { is absolutely continuous on [0 ) 1 2 (0) 0}j mD A x X x r j n x          

The nonlinear term G  is defined as : 

                               

1 1 1
1

1 1 1 1
1

1 1 1
1

( )( )

[( )( ) ]
( )

[( )( ) ]

n

j j
j

n

j j
j

n

n j j
j

Q x x s x

p Q x x s x
G x

p Q x x s x







 




 




 




 
   

 
 

  
  
 
 
   
 









                                         (5.4) 

for 1 2( ) ( ( ) ( ) ( ))T
nx a x a x a x a    

0x 
X , where the operator  is defined by (3.4). The 

linearized equation around  is given by : 
jQ

                                                  ( ) ( ) ( )
d

x t A C x t
dt

                                                        (5.5) 

where the bounded linear operator  is the Frechet derivative of  at  and given by:  C ( )G x 0x 

1 1
1

1 1 1 1
1

1 1 1
1

( )

[( )( ) ]

[( )( ) ]

n

j j
j

n

j j
j

n

n j j
j

Q x s x

p Q x x s x
Cx

p Q x x s x







 




 




 




   
 
 

  
  
 
 
   
 









 

Now let us consider the resolvent equation for A C :  
                           ( ) ( )I A C u u D A X C                                          (5.6) 

Then we have:  
  

1
1 1 1

1

( )
( ( )) ( ) ( ) ( )( ) ( )

n

j j
j

du a
a u a a Q u a s a

da
  




                                                      (5.7 1 ) 

2
1 2 2 1 1 1

1

( )
( ) ( ) ( ) [( )( ) ( ) ( ) ( )]

n

j j
j

du a
u a a p Q u a s a a u a

da
    




                            (5.7 ) 2

   

1
1 1 1 1

1

( )
( ) ( ) ( ) [( )( ) ( ) ( ) ( )]

n
n

n n n n j j
j

du a
u a a p Q u a s a a u a

da
    

  


                (5.7 1n ) 

From (5.7 1 , we obtain : )

                                                1 1( ) ( ) ( )u a a P a                                                         (5.8) 

where:  
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1
1 10

10
1

( ) exp( ) ( ) [ ( )exp( ) ( )

( ) ( )( )exp( ( )) ( )

a

na

j j
j

a a a

P a Q u a a d

d      

   






   

     







s a 

 

in which  is defined by:  ( )a

  
0

( ) exp( ( ) ) ( )
a

a d      
By -2(5 7 ) 1(5 7 )n , we get : 

 
2 2 1

1 1

( ) ( ) ( )

( ) ( ) ( )n n n

u a a P a

u a a P a







 

  

  
  

where:  

2 10
( ) exp( ( )( )) ( ) ,

a
a a 2 d           

  

1 10
( ) exp( ( )( )) ( ) ,

a

n na a n d            

1 1 1 1 10
1

( ) exp( ( )( ))[( )( ) ( ) ( ) ( )] ,
na

j j
j

P a p a Q u u d        




        

  

1 10
1

( ) exp( ( )( ))[( )( ) ( ) ( ) ( )]
na

n n n j j
j

P a p a Q u u d        




        

We define ( )   as follows:  

                                                  1
1

( ) ( )( )
n

j j
j

Q u  


                                                     (5.9) 

Substituting (5.8) and those expressions into (5.9) we obtain : 

                                                
1 1

( ) ( ) ( ) ( )
n n

j
j j

J E L j   
 

    

d da

                                 (5.10) 

where:  

               10 0
( ) ( ) ( ) exp( ( )( )) ( )

mr a

j j j jJ a N a a                

                           
0 0

( ) ( ) ( ) exp( ( )( ))
mr a

j j j jL p a N a a          



 

             1
10

( )exp( ) ( ) ( )exp( ) ( )d d da


             
                 

1

( ) ( )
n

j
j

E E  


   

                 
0 0

( ) ( ) ( ) exp( ( )( )) ( ) ( )
mr a

j j j jE p a N a a d da               
r a

 

        

0 0

0

( ) ( ) exp( ( )( )) ( ) ( )

( )exp( ( ))

1 2

m

j j jp a N a a

d d da

j n



     

      

    

   

    

 




 

 

Let us define : 
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( ) ( ) ( )exp( ( )( ))

( ) ( ) ( )exp( ( ) )

( ) ( ) ( )exp( ( ) )

1 2

m

m

m

r

j j j

r

j j j j

n r

j j j
j

a N a a da

p a N a a da

p a N a a da

j n

 

 

 

       

      

      


     

     

     

    





 




 

Then we can rewrite the above representations for ( ) ( )j jJ L  , and ( )jE  as:  

10
( ) ( ) ( )exp( ( )( )) ( )

m mr r

j j j jJ a N a a da


d               

10
( ) ( )

mr

j j d ,        

0
( ) ( ) ( )exp( ( ) )

m mr r

j j jL p a N a


         j a da  

1
10

exp( ) ( ) ( ) ( )exp( ) ( )j d d


               

               1
10 0

( )exp( ) ( ) ( ) ( )exp( ) ( )
mr

j j d d


                    

0
( ) ( ) ( )exp( ( ) ) exp(( ) ) ( ) ( )

m mr r

j j j j jE p a N a a da 
d                   

0
( ) ( )exp( ( ) ) exp( ) ( ) ( )

m mr r

j j j jp a N a a da


          

0
( )exp( )d d



 

      

10
( )exp(( ) ) ( ) ( )

mr

j d              

0 0
( )exp( ) ( ) ( ) ( )exp( )

mr

j j d d


               
1

  

If we define linear operators on the Banach space (0 )mL r  by:  

 

0

0 0

1

0

1

( )( ) ( ) ( )

( )( ) ( )exp( ) ( ) ( ) ( )exp( )

( )( ) ( )exp(( ) ) ( ) ( )

;

( )( ) ( )( ) ( )( ).

m

m

m

r

j j

r

j j j

n

j
j

r

j j j

n

j
j

S d

U d

U U

T d

T T

V T a U a

 



 

 

 

 

  

       

d             

           

   







  

  

 

    



 


 









d

                    (5.11) 

Then the following expression holds: 

                                        
0

( )( ) ( ) ( )
mr

V          

)

                                            (5.12) 

where:  

                                                 
1

( ) (
n

j
j

      


                                                         (5.13) 

and:  
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( ) ( ) ( )exp( ( ))

[ ( ) exp( ) ( )exp( ) ]

mr

j j j

j j j

p N

a a da

 





         

d     

    

     




                                      (5.14) 

It is not difficult to verify the above expression if we note that :  

0 0
( )( ) ( )exp( ) ( ) ( ) ( )exp( )

mr

j j jU d


  d                   

0 0
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d
d d

d




          



     

00
[ ( ) ( )exp( ) ( )exp( ) ] mr

j j d


               

0 0
( ) [ ( )exp( ) ( )exp( ) ]

mr

j j d d


          



  
   
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j d

        



  

   

0
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

                   

0
( )( ) ( ) ( ) ( )exp( ( ) )exp( )
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j j j jT p N j              
 

   
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j j jd d d d                      . 
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j j j d d


               

0
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r r r
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0

0

0
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( ) ( )exp( ( ) ) ( )exp( ) ( )e
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j j j j j
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 



 

           

          

          

    

    

    

  

  

   xp( )d

 
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and:  

                                           
0

( )( ) ( )( ) ( )
mr

j j jT U   d            

we can reach (5.14). From above definitions and (5.10), it follows that : 

 1
1 1

1

( ) ( )( ) ( )( ) ( )( ) ( )( )
n

j j
j

S U T U           




        

Hence, we have:  

                      

1 1
1 1

1

1 1
1 1

1

( ) ( ) [ ( )( ) ( )( )]

( ) [ ( )( ) ( )( )].

n

j j
j

n

j j
j

I T U S U

I V S U

   

  

   

   

 




 




    

   





 
                         (5.15) 

From (5.8), (5.9), (5.15) and the expressions during (5.8) and (5.9), we can conclude that:  
 
Lemma 5.1  
The perturbed operator  has a compact resolvent and : A C
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                 ( ) ( ) { 1 ( )A C P A C C P V }                                                        (5.16) 

where ( )A  and  denote the spectrum of  and the point spectrum of  respectively.  ( )P A A A
 
Proof  
From (5.8) and (5.15), we obtain the expression for  : 1u

1
1 10
( ) exp( ) ( )exp( ) ( ) ( )

a
u a a a d          

1
10

1

exp( ) ( )exp( ) ( ) ( )( ( ))( )
na

j j
j

a a Q u d     




       

1 1 2 1( )( ) ( )(nH a W a)           
  
where the operators  and W  are defined by : H

1 10
( )( ) ( ) ( )

a
H a G a a d       

1
1 2 1 10

1

( )( ) ( ) ( )( ) [ (
na

n j
j

W a G a I V S  )( )j      
 



        1
1( )( )]U d      

in which:  

 1( ) exp( )exp( ) ( ) ( )G a a a           
Since  is a Volterra operator with a continuous kernel, it is a compact operator on H 1(0 )mL r . 

On the other hand, by the same manner as the proof of Lemma 4.5, we can prove that T  and U  

are compact for all C  . Let { 1 (C V )}      . Then it follows that when C  ‚  

the operator W  is a compact operator from X  to 1(0 mL )r . By the same way, we can prove that 

  ,  can be represented by compact operators from X  to . Consequently, 

we know that 
2 ( )u a 1nu  (a) 1(0 )mL r

A C  has a compact resolvent. So we get that ( ) P A ( )CA C  
C

  (see [13, 

]). From above argument, it follows that C A187P ( )  ‚  ( (A C)   denotes the 

resolvent set of A C ), that is, ( ) (A C P A )C     . Since V  is a compact operator, we 

know that ( ) {0}V P (  ) {0}V ‚ ‚  and if   , there exists an eigenfunction   such that 

V    . Then it is easily seen that if we define the following functions  

             1 0
( ) exp( ) ( ) exp( ) ( )

a
u a a a d          

              2 1 1 10
( ) exp( ( )( ))[ ( ) ( ) ( ) ( )] ,

a
u a p a u d                

          

             1 10
( ) exp( ( )( ))[ ( ) ( ) ( ) ( )]

a

n n nu a p a u d        
           

1 2 1( ( ) ( ) ( ))T
nu a u a u a    gives an eigenvector of A C  corresponding to the eigenvalue  . 

Then  and we conclude that (5.16) holds.  ( )P A C  
 
Lemma 5.2  
Let  be the -semigroup generated by the perturbed operator ( ) 0t t  0C A C . Then ( ) 0T t t   

is eventually norm continuous and:  
                      0 ( ) ( ) sup{ ( )A C s A C Re A C }          

)

                                   (5.17) 

where 0 (A C   denotes the growth bound of the semigroup ( ) 0T t t  , and  is the (s A C )
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spectral bound of the generator .  A C

1C C

1

2 1( ( j j

p u

s Q u

   

 
Proof  
We define bounded operators  and  by : 2

 

 
1 1 1 1

1 1 1
1 1 1
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T
n

n n n
T

j j n j j
j j j

C u u p u

C u Ps Q u P s Q u u
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  
  

  

   

  

1C

     X



  

2

 

 
Then  and  generates a -semigroup 1C C C  A  0C ( ) 0S t t  . Since  is a nilpotent 

semigroup, so it is eventually norm continuous. Using Assumption 4.4 and similar proof to Lemma 
4.5, we can prove that  is a compact operator in X . Therefore, from Theorem 1.30 in 

([16], ),  is also eventually norm continuous. Since the spectral mapping theorem holds for 

the eventually norm continuous semigroup ([9], ) , we obtain (5.17).  

( )S t

2C

44P ( )T t

87P
 
If 0 ( )A C 0   , the equilibrium 0x   of system (5.2) is locally exponentially 

asymptotically stable in the sense that there exist 0 1M     and 0   such that if  and xX

x  x , then the solution ( )t x  of (5.2) exists globally and x( ) exp( )t x M t  x  for all 

. This is the main part of the principle of linearized stability (see [9]). Therefore in order to 
study the stability of the equilibrium states, we have to know the structure of the set of singular 

points 

0t 

{ 1 ( )}VC P      . Since 0 V  if Re   , I V  is invertible for large 

values of Re . By the theorem of Steinberg [17], the function  is meromorphic in 

the complex domain, and hence the set 

1


(I V  )
  is a discrete set whose elements are poles of 1( )I V

  

of finite order.  
 
Now we shall make use of positive operator theory once more. Our main purpose here is to 

determine the dominant singular point, i.e., the element of the set   with the largest real part. 
From (5.16) and (5.17), the dominant singular point gives the growth bound of the semigroup  

generated by 

( )T t
A C . First we will show that: 

  
Lemma 5.3  
Suppose that the following conditions hold:  

 

                                    
1

( )j m
j

i r exp( ) ( 1 2 )j mr j n
p

       

R

                                  (5.18) 

Then the operator V    is nonsupporting with respect to X   and the following holds:  

 
lim (r V


) lim ( ) 0r V                                                (5.19)                                                 

Proof  

Since ( ) exp( ) a

j j


( ) ja e


        is an increasing function of  , ( 1 2j )n    , we have:  
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1
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j

j j
j

j m j m
j
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i
p

r i r
p

  

  









  

  

  

                                        (5.20) 

In the following, we will show that Assumption 5.4 guarantees that the operator V  is strictly 

positive. In fact, from (5.13) and 5.14 we can see that : 

 

( ) ( ) ( )exp( ( ))

[ ( ) exp( ) ( )exp( ) ]

1
( ) ( )exp( ( ))[exp( ) ( )]

m

m

r

j j j

j j j

r

j j j m j m
j

p N

a a da d

p N r
p

 







         

     

i r d        

    

    

     





 

                (5.21) 

and : 

 

1

1

1

( ) ( )

1
( ) ( )exp( ( ))[exp( ) ( )]

( ) ( ) ( ) ( )

m

m

n

j
j

n r

j j j m j m
j j

n r

j m j j
j

p N r
p

G r p N d

 





     

i r d        

       









  

     

   



 

 

                       (5.22) 

where:  

 
1

( ) exp( ) ( ) ( ) exp( ( ))j m j m j m
j

G r r i r
p               

m

)

 

If we define , we can obtain : 0 1 2( ) { ( ) ( ) ( )}m m m nG r min G r G r G r   

                                                0( ) ( ) (ma G r                                                       (5.23) 

From the above discussion we know that if conditions 5.18 hold, then the operator V R    is 

positive.  
Therefore, in order to show the nonsupporting property of V R   , it suffices to prove that 

the integral operator �T   defined by : 

                                           �
0

( )( ) ( ) ( )
mr

dT          X                                    (5.24) 

is nonsupporting. It is easy to verify the inequality : 
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                             � 1f e e X XT                                                      (5.25) 

where the linear function f  is defined by:  

                                    
0

[ ( ) ( ) ( ) ] ( )
m mr r

f s x N x x dx d 
           

Then it follows that for all integers ,  n

                                                           �
1 nn f f e eT          

Since f  is strictly positive and the constant function 1e   is a quasi-interior point of 1(0 )mL r , it 

follows that � 0nF T    for every pair {0} {0}X F X 
 ‚  ‚ . Then � RT     is 

nonsupporting. Next we show (5.19).  
From (5.23) and (5.25), we obtain:  

 �
0 0( ) ( )m mV G r G r f e R XT               

Taking duality pairing with the eigenfunctional F  of V  that corresponds to ( )r V , one has:  

 0( ) ( )mr V F G r F e f          
If we let e  , we arrive at the inequality:  

 0( ) ( )mr V G r f e     
where:  

 

0

0 0
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( ) ( ) ( )

( ) ( ) ( )
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f e s x N x x d

s x N x x d dx
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


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  

 

 

 
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and:  

 
0

( ) exp( ( ))

1
( ) [1 exp( )] .

m

m

m

m

r x

r

r

r

f e N x x d

N x x dx

 



dx   

 






   

  

 


 

Since  for ( ) 0N x  [ m )mx r r   , we know that:  

 lim ( )r V
   

On the other hand, we obtain:  

 �V T g e R XT                  

where the positive functional g  is defined by:  

 0 0
[ ( ) ( ) ] ( )

m mr r
g np M N x x dx d 

         

1 2

 

where:  
 1 0{ sup ( ) sup ( )} { }n nM max ess ess p max p p p                  

Then we obtain the estimate:  

 0 0

1
( ) ( ) [1 exp( )]

mr
r V g e np M N x x dx  


       

From which we can conclude that:  
 lim ( ) 0r V

   

This completes the proof.  
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From condition (5.18) and the expression (5.22), the kernel (a )   is strictly decreasing as a 

function of R  . Using Proposition 4.3, we know that the function ( )r V   is strictly 

decreasing for R  . Moreover, if there exists R   such that r V( ) 1 , then   , because 

( )r V P ( )V   . From the monotonicity of r V( )  and (5.19), it is easy to see that the following 

holds:  
 

Lemma 5.5  
Under condition (5.18), there exists a unique 0 R    such that , and 

0
( ) 1r V  0 0   if 

; 0( ) 1r V  0 0   if ; 0( ) 1r V  0 0   if r V0( ) 1 .  

Next, by using the similar argument as Theorem 6.13 in [18] we can prove that 0  is the 

dominant singular point:  
 

Lemma 5.6  
Suppose that condition (5.18) holds. If there exists a 0    , then 0Re  .  

 
Proof  
Suppose that    and V  , then V    , where ( ) ( )a a     . From the 

expression (5.22), it follows that ReV      . Taking duality pairing with  on both 

sides, we have 

ReF   X 


( ) Re ReF F  Rer V       1, from which we conclude that , 

because 

( )Re r V

ReF   is strictly positive. Since ( )r V R    is a decreasing function, we obtain that 

0Re  . If 0Re  , then 
0

V     . In fact, if we suppose that 
0

V   

0
( ) 1

 , taking 

duality pairing with the eigenfunction  corresponding to 0F r V   on both sides yields 

0F 0F       which is a contradiction. Then we can write that 0c    for some 

constant  which we may assume to be one, where c 0  is the eigenfunction corresponding to 

. Hence, 
0

( ) 1r V  0( ) ( )exp(a a ( ))i a    for some real-valued function ( )a . If we substitute 

this relation into 
0 0V V    we obtain:  
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0
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0
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p a a d

N d

a

d

p a a d

N e e d d



 



 
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         

    

      





  

   

   

    

  

   

    a
 

From Lemma 6.12 in [18], it follows that ( ) ( )Im        for some constant  . Using the 

relation V   we obtain that e V
0

( )
0 0

i ie    ( , So )   , which implies that 0Im  . 

This completes the proof of Lemma 5.6.  
 
Theorem 5.7 
Under condition (5.18), the equilibrium state  

  1 2( ( ) ( ) ( ) ( ))T
ns a i a i a i a      

for -  is locally asymptotically stable if 1(2 7 ) 1(2 7 )n 0( ) 1r V   and locally unstable if .  0( ) 1r V 
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Proof  
From Lemma 5.5 and 5.6, we conclude that 0sup{ 1 ( )}Re P V     . Hence it follows that 

( ) sup{ 1 ( )} 0s A C Re P V       if 0( ) 1r V  , and ( )s A C 0   if . This 

completes the proof.  
0( ) 1r V 

 
Now we can state the local stability results for our epidemic model:  
 

Theorem 5.8 (Local stability results)  
Let  be the spectral radius of the operator T  defined by (4.5). Then the followings hold:  ( )r T

(1) If , the trivial equilibrium point of ( ) 1r T  1(2 7 ) - 1(2 7 )n  is locally asymptotically stable.  

(2) If , the trivial equilibrium point of ( ) 1r T  1(2 7 ) - 1(2 7 )n  is unstable.  

(3) If  and condition (5.18) holds for an endemic steady state, it is locally asymptotically 
stable.  

( ) 1r T 

 
Proof  
The proof is similar with ([19], Theorem 5.8).  

 
We have not determined what kind of conditions could guarantee (5.18). Since it would be 

difficult to answer the question if we consider it under most general conditions. 
 
6.  Conclusions 

 Dividing the infected class into several compartment, provides an opportunity to look into the 
effect of the infection under the variation of the viral load. It also provides a platform to discuss the 
nature of the disease progression as the viral load varies among different classes. The age-
structured behavior of the model adds in explaining the distribution of the disease in separate 
classes by age. This paper presents the model and also focusses on the various threshhold 
parameters which guides the existence of the endemic solutions. From the practical point of view, 
these results can be utlized in controlling the progression of the disease with the change in the viral 
load. This is a general model, which discusses the effect of disease in general. This can be utilized 
in discussing the effect of specific diseases by suitable choice of parameters. Moreover this paper 
assumes permanent immunity in the individuals once they recover. This nature can be relaxed to 
increase the scope of discussion by modifying the model to include diseases which also posses 
temporary immunity in recoved individual. 
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