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Abstract

The major challenge in studying the behavior of a viral infection is the variation that occurs in the
level of infection. In this paper, a multi-infected group age-structured epidemic model has been
considered. The existence and uniqueness of the nonnegative solution in this model has been
proved. Threshold results determining the existence of endemic states have been established under
various conditions. The local stability of the steady states have been discussed in this article.
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1. Introduction

Viral disease is one of the most common disease at present. The number of diseases transmitted
by viruses are growing at a rapid rate. Several research works across the globe is aimed at
investigating the probable reasons behind the disease. In a certain study [1], the temporal
progression of the clinical, radiological and virological changes in community outbreak of severe
acute respiratory syndrome (SARS) was examined. The study results claimed that worsening in the
patient condition is not related to uncontrolled viral replication but may be related to
immunopathological damage caused by the virus. Viral level often determine the ability of
transmission for some diseases such as malaria and fever, where the infectivity depends on the
number of parasites or viral loads in infected hosts or vectors [2],[3]. There is a huge volume of
research on the viral action of Human Immunodeficiency Virus. A differential infectivity model
was proposed in [4],[5],[6]. Furthermore, [5] subdivided the infected population into n subgroups,

SI,1,---1,R. Upon infection, an individual enters subgroup j with probability p; and stays in

that group until it is inactive in transmission, where Zr;:l p; =1. Highly active antiretroviral

therapy (HAART) is currently one of the most important component for treating HIV-1 infection.
A study on the efficacy of HAART in suppression of HIV-1 has been examined in [7]. It was
observed that the rate of virological failure of HAART was highly documented among the SWISS
cohort group where the study was conducted, but the chances of clinical progression was low even
in patients with viral rebound.

While ODE models are often used when the population structures (age, sex, etc.) are neglected,
there are many cases in which incorporating one or more of these structures into the model may
provide additional and important information which may be helpful in the understanding of the
disease dynamics. The incorporation of age-dependent demographical and/or epidemiological
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parameters usually leads to a system of first-order partial differential equations with nonlocal
boundary conditions. In articles like [8], the author has considered the mixing strategies and
emphasized the role played by proportionate mixing through an age structured model. The authors
also developed expression in terms of preference function for general solution of the framework. In

this paper, we study a more general age-structured SL,1,---1 R model that includes multiple

infected-groups of human populations. We need to specify a general assumption that ensures the
uniqueness of the positive equilibrium as well as the local stability result, which follows
subsequently.

The paper has been organized as follows. In Section 2, we describe the multi-infected-group
model and the reduced system under the assumption that the total population has reached its stable

age distribution. In Section 3, we find the C;, —semigroup which has been generated by the system

of linear age-structured model. Furthermore, we discussed the existence and uniqueness of
nonnegative solution. Our main theorems on the existence of steady states are given in Section 4.
The main results about the stability analysis of the equilibrium solutions have been presented in
Section 5.

2. The Model

Let us define the state of stress at a point in the stationary frame S°, by the following stress
tensor: (Fig.1) We subdivide a closed population into n+ 2 compartments containing susceptible,
n infective and recovered individuals, which means that susceptible individuals become the
infected individuals with differential infectivity, and become the recovered individuals with
permanent immunity. Corresponding to the differential infectivity, the infectious individuals are

divided into n classes, I,, I,, ---, | . We assume that the population is in a stationary

demographic state. Let N(a),0<a<r, ( r, denotes the highest age attained by the individuals in

the population) be the density with respect to age of the total number of individuals, under our
assumptions, N (a) satisfies:

N(a) = #'Nexp(-[ u(o)do). 2.1)
where u(a) denotes the instantaneous death rate at age a of the population, the constant N is the
total size of the population and " is the crude death rate, we assume that (@) is nonnegative,
locally integrable on [O,r, ), and satisfies:

J; lo)do = 4.
The crude death rate is determined such that:

w [ @da=1

where f(a) :exp(—joa U(o)do) is the survival function which is the proportion of individuals

who survive to age a. Then we have the relation:
N(a) = ¢"Nf (a). (2.2)
Next let S(a,t), I,(a,t), (j=12,---,n) and R(a,t) be the densities of respectively the
susceptible , infected population in the jth class and immune population at time t of age a.
Hence, we have:

N(a)=S(a,t) + Zn: I;(a,t) + R(a,t). (2.3)

Let y; be the recovery rate in the class I, and p; be the probability that an individual enter the
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class I (zr;zl p; =1). Let B;(a,b) be the age-dependent transmission coefficient of class I,

that is, the probability that a susceptible person of age a meets an infectious person of age b in the
class Ij and becomes infective, per unit of time. Define the force of infectious of class IJ. by

4;(a,t) given as:

2@t = jo ,(a,0)1,(o,t)do. (2.4)

Moreover we assume that the death rate of the population is not affected by the presence of the
disease and hence depend only on time. Under the above assumption, the spread of the disease can
be described by the system of partial differential equations:

(5 +5)S(at) =—(u(a) + A(a,1)S(at), (25,)
£+ 2L =pi@EN)S(a) - (u(@) + 7)), (at), (2:5,)
£+, 1) = pAa)S(at) - (u(@) + 7,)1,(a.), (2.55)
g+g)|n(a,t)¥ p.A(a,1)S(a,t) — (u(a) + 7)1, (1), (250.1)
(£ +2)R(at) = zr;:l}/j I, (at) - u(@)R(a,t), (25,.,)

where:
AMan=3 " 4@,

with boundary conditions:

S(O,t):ﬂ*N, IJ(O5t):0(J ::Lan)a R(O,t):O (26)
Consider the fraction of susceptible, class 1, and immune population at age a and time t:
I.(a,t) .
S(a,t)= S(a’t)a ij(awt):L(J =L"'>n)> r(a)t):w_
N(a) N(a) N(a)

Then the system (2.5,)-(2.5,,,) can be written to a simpler form:

(£+9)s(at) =-A(a,t)s(a,t), 27,)
(F+2i(at) = pAat)s(at) - xi(at), 27,)
(& +2i(a.) = p,A(a,)s(a.t) - i, (at), (2.75)
2+ 9)i, (a0 = A D@D - 7, (1) @7,.)
G+Dr@n=>" 7@, 27,.,)
s(0,t)=1i;(0,t)=0,(j=1---,n), r(0,t)=0, (2.8)
where:
Ma=[" (", F,@(EDNEIE N(@) = u'Nf (a). (29)
s(a,t) + 22:1‘ [@t+r@t) =1 (2.10)
In the following, we mainly consider the system (2.7,)-(2.7,,,) with the initial conditions:
s(a,0)=s"(a), i,(a,0)=ij(@)(j=1---,n), r(a0)=r°(). (2.11)
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3. Existence and Uniqueness of Nonnegative Solution

In this section we shall show that the initial-boundary value problem (2.7,)-(2.7,.,), (2.8),

(2.11) has a unique solution. First we note that it suffices to consider the system in terms of only
s(a,t), i.(a,t) (j=1---,n) since, once these functions are known, r(a,t) can be obtained by

r(at) =1-s(a,t) - Zj:l i(at).
First we introduce a new variable S by §(a,t) =s(a,t) —1. Then we obtain the new system for

s(a,t), and i (a,t) (j=L---,n):

(£ +2)s(a,t) =-A(at)(s(at) +1), (3.1,)
24 2)i(a,t) = pAR D@L +1) - i (3, t), (3.1,)
(£ +D)i,(a,t) = p,Aa,)(S(@,1) +1) - 70, (a,t), (3.1,)
(£ +D)i (at) = p,Aa,)(s(a,t) +1) - 7 (a,t), (31,.)

s(0,)=0, i,(0,)=0(j=L1--,n).

Let us consider the initial-boundary value problem described by the system (3.1,)-(3.1,,,) as
an abstract Cauchy problem on the Banach space X = L'(0,r )x L'(0,r ) x---x L'(0,r_) with

norm ||| = Zr: |X||, for x(a) = (x,(a), ,(a),+, %,,.())" € X, where ||, is the ordinary norm
of L'(0,r ). Let A be alinear operator defined by:

_dx(a)
da

_dxz(a)_
(AX)(a) = da (@) : (3.2)

_dx,,(a)

X ..(a
da. 7/n n+1( )

X(a) = (x,(3), X,(a),+,%,.,(a))" € D(A),
where p' is the transpose of the vector p and the domain D(A) is given as:
D(A) ={x e X| x is absolutely continuous on [0,r_), x(0) = (0,0,0)"}.
Suppose that f3;(a,b) € L*((0,r,)) x (0,r,)) . We define a nonlinear operator F : X — X by:

- Q)@ %)

pl(; Qij+1)(a)(1+ X:I.(a)) . Xe X, (3_3)

(FX)(@) =

P (X Q)@+ X @)
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where Q; is a bound linear operator on L'(0,r,),(j =L1---,n) given by:

Q)@ =["B@c)N@)f(c)do. (34)
Note that Q; f € L"(0,r,) for f e L'(0,r,) and hence the nonlinear operator F is defined on

the whole space X. Let u(t) = (§(-,t),i1(~,t),---,in(-,t))T e X. Then we can rewrite the initial-

boundary value problem (3.1,)-(3.1,,,) as the abstract semilinear initial value problem in X:

S = AU+ FU(). U =u < X, (35)

where u°(a) = (5°(a),i’(a),--,i’(a))", s°(a) = s°(a) —1. It is easily seen that the operator A is
the infinitesimal generator of C, - semigroup T(t), t>0 and F is continuously Frechet
differentiable on X . Then for each u® e X, there exists a maximal interval of existence [0,t,),

and a unique continuous mild solution t — u(t,u®) from [0,t,) to X such that:
W) =TOu + [ T(t-2)F(u(.u)dz, (3.6)
for all te[0,t,) and either t,=+c0 or t, <+ and lim__|[u(t,u,)|=oc . Moreover, if

U, € D(A), then u(t,u,) e D(A) for 0<t<t, and the function t — u(t,u,) is continuously
differentiable and satisfies (3.5) on [0,t,) (see [9], B, Proposition 4.16).

Since S(a,t) = #'Nf (a)(L+ g(a,t)) , from above discussion we obtain that the solution
(S(at), 1, (at), -, 1, (at),R(at))", te(0,t,) is continuously differentiable and satisfies (2.5)-
(2.6), where either t, = +o0 or t, < +o0 and

lim, (S@B)+ L@+ +|1, @] +|R(ab)
From |N(a)] =[N (a,t)| = N , we easily obtain t, = -+oo. Thus we have the following result.

D:+w.

Theorem 3.1
The abstract Cauchy problem (3.5) has a unique global classical solution on X with respect to
initial data u, € D(A).

Therefore, it follows immediately that the initial-boundary value problem (2.5)-(2.6) has a
unique global classical solution with respect to the initial data.

4. Existence of Steady States

Let u” =(s"(a),i; (a), --,i,(a)) be the steady state solution of the set of equations (2.7,) -
(2.7,.,) . Itis easy to verify the following:

s*(a) = exp(~ j: A (0)do), 4.1,
(@) = p.[ exp(-n(a- o)A (@)exp(-[] 2 ()dn)do, (41,)
i;(2) = p, |, exp(-7,(a— )" (@)exp(=[ 4’ (n)dn)do, (41,)
i7(@) = p, [} exp(-7,(a— o)A (@) exp(-[ 2" (n)dn)do, (41,.,)
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where
r@=[" ", A @OHENEE (41,,,)
Substituting (4.1,) —(4.1,,,) into (4.1,,,) and changing the order of integration, we obtain an
equation for A(a) .
2 (@)= [ p(a,0)4 (e)exp(= 4" (n)dn)do, (42)

where:
#@.0) =Y pey(a0) ,@0)=[" B@IN@PCr,E-oNds.  (@3)

From (4.1 .,), it follows that:

n+2

2 @< nu N A, [

l)
where:
18] =maxglal, .- Ja L3 7], =maic] o[ 3
in which ||-OO, |, denote a L” -norm and a L' -norm, respectively. Then it follows that

A" e LZ(0,r,) since i}keLi(O,rm)(j:LZ,---,n). It is clear that one solution of (4.2) is
A"(a) =0, which corresponds to the equilibrium state with no disease. In order to investigate a
nontrivial solution for (4.2), we define a nonlinear operator ®(Xx) in the Banach space
X = L(0,r,) with the positive cone X, ={w € X,y >0,a.e} by:

(@x)(a) = [ " p(a,0)x(c)exp(-| x(m)dn)do, xeX. (4.4)
Since the range of @ is included in L”(0,r,), the solutions of (4.2) correspond to fixed points
of the operator @ . Observe that the operator @ has a positive linear majorant T defined by:

(TX)(a) = jorm p(a,0)x(0)do, xeX. (4.5)

We summarize the Perron-Frobenius theory for the positive operators in an ordered Banach
space. Let X be a real or complex Banach space and let X" be its dual, i.e., the space of all linear
functionals on X . The value of F € X" at v € X is denoted by <F,1,//>. A close subset X, is

called a cone if the following holds(see [19], P 444 ).

Definition 4.1
A positive operator T € B(X) is called semi-nonsupporting if and only if for every pair

weX,, {0, FeX,, {0} , there exists a positive integer p= p(w,F) such that
<F,T ”1//> > 0. A positive operator T € B(X) is called nonsupporting if and only if for every pair

weX,, {0}, Fe X, {0}, there exists an integer p = p(y,F) such that <F,T”1//> >0 for

aln>p.
The reader may refer to [10],[11] for the proof of the following theorem:

Theorem 4.2
Let the cone X, be total, T € B(E) be semi-nonsupporting with respect to X, and let r(T) be a

pole of the resolvent R(A,T). Then the following hold:
(1) r(M)eP.(T), {0}, r(T) isasimple pole of the resolvent.
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(2) The eigenspace corresponding to r(T) is one-dimensional and the corresponding eigenvector
w € X, is a nonsupporting point. The relation Te = up with ¢ € X, implies that ¢ =cy for

some constant C.

(3) The eigenspace of T~ corresponding to r(T) is also a one-dimensional subspace of X~

spanned by a strictly positive functional F € X"

(4) Assume that X is a Banach lattice. If T € B(X) is nonsupporting, then the peripheral

spectrum of T consists only of r(T),i.e, |A|<r(T) for Leo(T), {r(T)}.

The following comparison theorem is due to [12].

Theorem 4.3
Suppose that X is a Banach lattice. Let S and T be positive operator in B(X) .

() If S<T,then r(S) <r(T).

(2)If S and T are semi-nonsupporting operators, then S <T,S =T implies that r(S) <r(T).
With the above explanations, we are in the perfect shape to investigate the nature of the majorant

operator T defined by (4.5). We initiate the process with the following assumption:

Assumption 4.4
1)
pi(a,¢) e LL((0,r,) < (O,r,)).
)
Liggj'orm | B;(@+h,&)—B;(a,&)Ida=0 uniformly for £ e R,(j=12,---,n).
where S; is extended by f;(a,&) =0 for a,& € (—,0) U (r,,+o).
(3) Thereexist | € Z, (1<1<n) and a number x with r. > x >0 and ¢ >0 such that

B (a,¢&) = ¢ foralmost all (a,&) € (O,r, ) x(r, —x,r,).
Then we can prove that :

Lemma 4.5
Under Assumption 4.4, the operator T : X — X is nonsupporting and compact.

Proof
Define the positive linear functional F € X by:

(Fw)=[" 9@w(o)o, weX,
where g(o) is given by:

9(0) = [ PS(EN(E)exp(—7 (& - o))dE,

(4.6)

@.7)

(4.8)

(4.9)

where the function s(&) is defined as s(£)=0,& € (0,r, —«),s(&) =¢, & €[r, —«,r,). Hence
£(a,&) > s(&) for almost all (a,&) € (0,r,)x(0,r,). Since g(o) >0 for all o €[0,r,), the

functional F is strictly positive and :
(F.x)e<Tx, e=leX,, xeX
Then for any integer n, we have:
T > (F,x)(F.e)"e.

4

Therefore we obtain <Y,T”x> >0, n>1 forevery pair xe X, , {0}, Y e X, {0}, thatis,
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T is nonsupporting. Next observe that :
["lp(a+h,0)-p(a,c) | da

= 1] Y B @+ RPN exp(—r, (£ - o))dé
- Zril B;(a,8)p;N(S)exp(-y;(5 —o))d< | da
=01 18 @08 - B @ AN exp(, (¢ ~o))dé | da

* Tm Im s
SHNG [ [ 12 4,@ 08 - (a.8) | dcda. (4.10)

J:
In order to prove the compactness of T , we identify the Banach space X with the subspace of
L'(R) such that X ={w € L'(R) |w(a) =0 for a e (~,0) U (r,,0)}. Then we can interpret
T as an operator on L'(R) such that X is its invariant subspace, so it is sufficient to show that

the operator T is compact in L'(R) . Let K be a bounded subset of L'(R). Then it follows
immediately that T (K) is also a bounded subset. Observe that :

[ lM@+h) (M@ da< | [ |o(@+ho)-p(@0)]x@)| doda
< ||x||0§u<pr jR |p(a+h,0) - p(a,o) | da.

Together with the condition (4.6) and (4.10) it follows that T (K) is an equicontinuous family
in L*-norm. Moreover it follows from T (K) c X that:
L . 1(X)(0)|do=0, xeK.

Thus we can apply the compactness criterion by Frechet-Kolmogorov ([13], P,,.), that is,

T (K) is relatively compact in L'(R). Thus T is a compact operator. This completes the proof.

From Theorem 4.2, it follows that the spectral radius r(T) of operator T is the only positive

eigenvalue with a positive eigenvector and also an eigenvalue of the dual operator T with a
strictly positive eigenfunctional.

Now we can prove the following:

Theorem 4.6 (Threshold results).
Let r(T) be the spectral radius of the operator T defined by (4.5). Then the following holds:

(1) If r(T) <1, the only non-negative solution X of the equation x = ®(x) is the trivial solution
x=0.
(2) If r(T)>1, the equation x = ®(x) has at least one non-zero positive solution.

Subsequently, in order to investigate the uniqueness problem for nontrivial positive fixed points of
the operator @, we introduce the concept of concave operator (see [14]).

Lemma 4.7 [14].
Suppose that the operator A: X, — X, is monotone and concave. If for any X € X, satisfying

o, £ X< B, (o = (X) > 0,8 = F,(x)>0) and 0 <t <1, there exists 77 =7(x,t) >0 such
that:
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A(tx) > tAX +nu,, (4.11)
then A has at most one positive fixed point.

Here, we can prove the following:

Theorem 4.8
If for all (a,0) €[0,r,)x[0,r,), the inequality

B;i(@,0)N(o) -y,p;(a,0) 20(j =12,---,n), (4.12)
holds, and r(T) >1, then @ has only one positive fixed point.

Proof

From Lemma 4.7 and Theorem 4.6 (and Definition 4.7 in [19]), it is sufficient to show that under
condition (4.12), the operator @ is a monotone concave operator satisfying the condition (4.10).
From (4.4) and (4.3) it follows that:

®(x)(a) = [" p(a,0)x(c)exp(~[ X(m)dn)do
- I} p(@ o P, Xdndo
= —p(a,0)exp(-[ x(n)dn) ;5 +[ " exp(=[ x(n)d n)%qo(a, o)do
= p(a,0) — p(a,1,,) exp(=[." x(m)dn) + [ exp(=[ x(7)dr)

-3 0,8, @0)N@) + X [ 07,8, @ONE@exp(-7, (£ - 0)dldo
= p(a.0)+ [[" exp(-[ XA P @IN(@) + Y. P70, (a.0)ldo

= p(a,0) - [ exp(-| X(n)dﬂ)i p,[B,(a.0)N(0) - 7,0,(a,0)]do,

from which together with condition (4.12) we know that ® is a monotonic operator. Next from
(4.4) and (4.3) we observe that:

a(x)u’ < d(x)(a) < f(x)u’
where u® =1 and:

a(¥) = [ " g(o)x(@)exp(-[ x(n)dn)do,

B() =M " h(e)x(@)exp(-[ x(n)dn)do.
Here :
M = max{esssup £, (a,b),esssup g, (a,b),---,esssup 5, (a,b)} < +oo,
g(o) isgiven by (4.9) and h(o) is defined by:

h(c) =n L N(E)déE.

It follows that z(x) >0 and £(x) >0 for xe X, , {0}. Moreover we obtain:
D()(a) - t0(x)(@) = t[ " p(a,0)x(e)exp(=[ x()dn)exp(L-1)| x(7)dn) ~Ldo
> [ g(e)x(@)exp(-[ x()dn)lexp(-1) [ X(r)dn) ~1ldo,

from which we conclude that @ is a concave operator and the condition (4.11) is satisfied by
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assuming u® =1 and :

n(xt) =t[" g(e)x(@)exp(=[” xGr)dn)lexp(@-1)|. x(n)dr) ~1]do.
This completes the proof of Theorem 4.8.

We need to look for relationships that could guarantee condition (4.12) We say that if
£(a,&)N (&) is continuous and non-increasing as a function of £ € (0,r,), then (4.12) holds. In
the following we will show :

/Bj (a,0)N (o) _7/j¢j(aao-)

~ B,@IN@) -7, [" B, @ONEexp(—y,(E - oNde
> B,(@,0)N (@)L 7, [ exp(-7 (& - 0))d€]
- B,@IN(@)L-7, § [ 4EoPt (-0

= B;(a.0)N (o)L +exp(-y,(& - o)) [5=5
= B,(@,0)N(o)exp(7,(r, - o)
>0.
In particular, condition (4.12) holds if f; is independent of age of infective o, because N (o) is

a decreasing function.
The assumption that f;(a,£)N (&) is non-increasing on & implies that the number of age a

infected by younger individuals is always greater than the number of those infected by older
individuals. This assumption may not be realistic for some diseases. Here we use the assumption to
explain the validity of condition (4.12).
5. Stability Analysis for Equilibrium Solutions
In order to investigate the local stability of the equilibrium solutions:
(s"(a)i; (a).i; (@), i ()"
of (2.1)—-(2.7,,,) , we first rewrite (2.1,) —(2.7,,,) into equations for small perturbations. Let
S(aat) = S*(a) + n(avt)a I1(a9t) = Il* (a) + 51(a7t)7 Ty in (a:t) = I: (a) + 5n (avt)

From (2.1)-(2.7,,,) , we have:
(& +zn@t) =-A(ann(at) +s’ (@] -1 (@)n(at), (5.1,)
(F+@a@) = pliat)(r(at) +s'(a) + " (@)n(a,)] - 7o (at), (5.1;)
(& +2)8, (a0 = pLAEDmEY +5 (@) + 2 (@n(a,0] - 7,6, (8., 5.1,.0)

where:
A@n=[;" Y (5(@.0)5,(@.H)N(0)do.

U(Oat)=0a 5](09t)=O(J=Lan)
Therefore we can formulate (5.1)) —(5.1,,,) as an abstract semilinear problem on the Banach
space X .
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PO _ axt) + G(x(t), x(t) = (2(1).5,E)-, 6, @) € X, 52)
where the generator A is defined by :
(A)(@) = (-2, DD ) Dl (53)

with the domain:
D(A) ={xe X |x; isabsolutely continuous on [O,r, ), j =12,---,n,x(0) = 0}

The nonlinear term G is defined as :

(L QX,)(% +8) - A%

PRI QX )%+ 1 42°%]

G(x) = (5.4)

P QX )06 +8)+ 47%]

for x(a) = (x,(a),X,(a),"--,X,(a))" € X , where the operator Q; is defined by (3.4). The
linearized equation around X =0 is given by :

%x(t) = (A+C)X(1), (5.5)

where the bounded linear operator C is the Frechet derivative of G(Xx) at x =0 and given by:

(X Q)8 -2
j=1

. e ) 1+
tre| PIC QX0+ +2%]

P QX )06 +8)+ 47%]

Now let us consider the resolvent equation for A+ C :

(Al-A-Clu=y, ueD(A), weX, AeC. (5.6)
Then we have:
D 4 1+ 4 @) = i (a) - <z Qu,.)(@)s"(a). 57,)
du ! (a) FA 7)U,(@) = v, (a) + pl[(z Qu.)(@)s (@) + ' (@)u,@)] 57,)
d“fg;(a) F 4 7)) = o a(@) + pn[<z QU @S @+ @@L (67,.)

From (5.7,), we obtain :
u(a) =g (a)+P,(a), (5.8)
where:
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0,(3) = exp(-4)T1(a) [ v, (0) exp(A0)T  (0)dor;
P,@) =, (X Qu,.)@)exp(-4(a-NTT(@)do.

in which IT(a) is defined by:

I1(a) = exp(- 2" ()dn) = " (a).
By (5.7,)-(5.7,.,), we get:
u,(a) =p,(a) +P,(a),

un+1(a) = (/)n+1(a) +P (a),
where:

9,(8) = [ exp(-(2+ )@ o))p,(0)do,

#,4(8) = [ exp(-(2+ 7,)(@- )., (0)do,

(@) = [ exp(-(2+ 7)(@- DX Qu,.)(E)NI(0) + 4 (@), (e)]do,

P (@)= Py [ exp(-(2 + 7,)(@- DX Q. )@ITI(0) + ' (o), (0)]do.
We define 6(o) as follows: "
0(0) =Y (Quy.)(o).
Substituting (5.8) and those expressions inti):1(5.9) we obtain :
0(0)=2.3,(0) +E,(0) + L L,(0)

where:

3,0 =[" Ao, AN@[ exp(~(4 +7,)@- Dy, (£)dEda,
Li(0) =" pB(c.a)N(@)[ exp(~(4+7;)(a-&)
2 (E)exp(-AOTIE) [ 0, (r)exp(An)T ()dnd Eda,

E(0)= X E, (o),

E,(0) =" P (0,AN@)[ exp(~(4 +7,)(@- E)OEN(E)dEda
- B0, N(@) [ exp(~(4+ ;) (@~ E)A (E)TI(E)

'Iof 0(17)exp(—-A(¢ —n))dndSda,

j :LZ,,n
Let us define :

(5.9)

(5.10)
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0,)(0.8) =] By(c.aN(@exp(~(2+7,)(a-&)da,
0:5(0.9) =[] p,B,(c.a)N(@)exp((4 +7,)a)da,

0.0, = 2 [ P (AN EXP(-(i-+ 7 )a)da

j=12:-.n.
Then we can rewrite the above representations for J;(o),L;(c),and E,;(o)as:

3,0)=[" [ B (o.aN(@exp(-(4 +7,)(a- &)day, ,(£)dé
= [70,)(0, 9w .4(9)¢,
L) =" [ p,B,(c. 0N @)exp(~(4 + 7)a)da
Xp(y,&)A (ONE); 9. exp(An)IT()dnd e
= [} 0,,(0.Oexp(r HX OO, @ (n)exp(AmIT (r)dd
E, @) =[] pA (. QN @exp(~(4 + 7,)a)daexp((2 + 7,) )¢
I, 7 P (N @exp(=(4 + 7 ))a)daexp(y E) A (OTI(E)
[ 6y exp(an)dnde
= [ 0., (0.8 exp((A + 1)HOETI(E)dE
[ 950, )exp(r, )2 (OTE)]; 00) exp(am)dnde.

If we define linear operators on the Banach space L*(0, r.) by:
(S:9)(@) = [ 0,,(c. D (E)¢,
U, )©) = [ 0,,(0.)exp(r, )2 (N wexp(An)dndé,

U, = Zn:UM;
T0)©0) =[" 9, (0. &) exp((A+ ¥ NOTEW (£)dE,
T, = Zn:le;

Vw)(o)=Tw)(@) - U, p)@).
Then the following expression holds:
Va)o) =" 2o ndn,
where:

Z/i(o-’n) = i 141(0'777),

j=1
and:

(5.11)

(5.12)

(5.13)
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Zi(om)=[" p,B, (0. N exp(-A(E ~ )
: (5.14)
[T1() ~exp(-7,¢) | 7;T1(2)exp(y a)dalde.

It is not difficult to verify the above expression if we note that :
U, 0)(©) = [ 0,5(0.£)exp(r, )2 (O], v (o) exp(am)dyd
_ J'rm (_dH(f)
0 de
=[N0, (0. E)exp(r,€) [, wmexp(Amdn] [z

), (0.)exp(y,6)] () exp(am)dnlde

o) 1O Ll (0. D002, wimetinonos

r 0Q,;
=/ [n(:)a%(a,@exp(y,-f) [ v exp(anydy

711, (0.£)exp(r,8)] () exp(An)dnldé + (T, ) (o)
= (T, )(0) - [ TIE) ;5,0 EIN(E) exp(~(A + 7,)E)exp(y,)

[T wnexp(amdndé + [ 7 11(€)p, (0.€)exp(y,€) [, w ) exp(2n)dndE .
From:

[ 7)., (0.8 exp(r &), w () exp(an)dnds

= [ [ 7@ exp(, &), (0.8)déw () exp(an)dn

=7 " 7@ e[ B, (o, AN (@) exp(~(2 + 7 )a)dad £y () exp(An)dn
= [ [ b,y N @exp(-(2+ 7,)a)] " 7 T1(E) exply ) day () exp(An)iy

=717 P (@ ONE exp(—(2+ 7O 7,T1(@)exp(y,a)dadEy (n)exp(An)dn,
and:

(T w)(@) - WU, w)0) =[x, (o.m)dn,
we can reach (5.14). From above definitions and (5.10), it follows that :

0(0) = (8,,.)0) + U pal)(0) + (T,0)0) - (U,0)(o).
Hence, we have:
O(c)=(1-T,+ Uz)il[z (S,¥;)o)+ U AW1H71)(O')]

) (5.15)
=(l _VA)_l[Z (S/‘{jl//jﬂ)(a) + (Uﬂl//lH_l)(J)]'

From (5.8), (5.9), (5.15) and the expressions during (5.8) and (5.9), we can conclude that:

Lemma 5.1
The perturbed operator A+ C has a compact resolvent and :

29



Xi-Chao Duan, Xue-Zhi Li, Souvik Bhattacharya & San-Ling Yuan

oc(A+C)=P,(A+C)={1eC|leP, (V))}, (5.16)
where o(A) and P_(A) denote the spectrum of A and the point spectrum of A respectively.

Proof
From (5.8) and (5.15), we obtain the expression for u, :

0, (@) = [ exp(-2a)I1(a) exp(A0)T ™ ()y; (0)do

[} (A exp(2oNT )Y Q. ))(e)do
= (H l//l)(a) -W (l//la Wosrooy l//ml)(a),

where the operators H and W are defined by :
(Hy,)(@) = | G(a,o)w(a)do,

n
W0z 00)(@) = [ G(a,0)T(@)(1 =V,) 1Y (S, 07,.)(0) +(U yalT)(o)]do,
in which: a

G(a, o) = exp(—ia)exp(1o)I1(a)[1 (o).

Since H is a Volterra operator with a continuous kernel, it is a compact operator on L1(0, r.).
On the other hand, by the same manner as the proof of Lemma 4.5, we can prove that T, and U ,
are compact for all AeC. Let A={1eC|leo(V,)}. Then it follows that when 2€C, A
the operator W is a compact operator from X to L'(0, r.). By the same way, we can prove that
u,(a) ---, u
we know that A+C has a compact resolvent. So we get that c(A+C) =P (A+C) (see [13,

(a) can be represented by compact operators from X to L*(0,r_ ). Consequently,

n+1

Pg; 1). From above argument, it follows that C, A< p(A+C) ( p(A+C) denotes the
resolvent set of A+ C), thatis, A>c(A+C)=P (A+C). Since V, is a compact operator, we
know that o(V,), {0}=P,(V,), {0} andif A € A, there exists an eigenfunction y, such that
V,y, =y, . Thenitis easily seen that if we define the following functions

u,(a) = —exp(—Aa)Il(a) j: exp(lo)y, (o)do,

U,(@) = p,J; exp(-(2+ 1) (@~ o)y, (0)T1(0) + A" (o), (0)]do,

Up,2(8) = B, [ eXp(=(2+ 7, )@= o))y, (0)T1(0) + 4 (0)uy(0)ld o,
(u,(a),u,(a),"--,u, ,(a))" gives an eigenvector of A+C corresponding to the eigenvalue A .
Then A < P,(A+C) and we conclude that (5.16) holds.

Lemma 5.2
Let (t),t >0 be the C,-semigroup generated by the perturbed operator A+C . Then T (t),t >0

is eventually norm continuous and:
@,(A+C)=5(A+C)=sup{Reu| peo(A+C)}, (5.17)
where @, (A+ C) denotes the growth bound of the semigroup T(t),t >0, and S(A+C) is the
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spectral bound of the generator A+ C .

Proof
We define bounded operators C, and C, by :

Cu=(-A"u, pAu, -, p,A"u)",

Czu = (_S*z (quj+1)a HS*Z (quj+1)a'“9 Pns*z (quj+1))Ta ueX.
j=1 j=1 j=1

Then C=C, +C, and A+ C, generates a C,-semigroup S(t),t >0. Since S(t) is a nilpotent

semigroup, so it is eventually norm continuous. Using Assumption 4.4 and similar proof to Lemma
45, we can prove that C, is a compact operator in X . Therefore, from Theorem 1.30 in

([16],P,, ), T(t) is also eventually norm continuous. Since the spectral mapping theorem holds for
the eventually norm continuous semigroup ([9], F,, ) , we obtain (5.17).

If @,(A+C)<0 , the equilibrium Xx=0 of system (5.2) is locally exponentially
asymptotically stable in the sense that there exist £ >0, M >1 and y <0 such that if x € X and
|| < &, then the solution x(t,x) of (5.2) exists globally and |[x(t,x)| < M exp(yt)|x| for all

t>0. This is the main part of the principle of linearized stability (see [9]). Therefore in order to
study the stability of the equilibrium states, we have to know the structure of the set of singular

points A={2eC|[1eP (V,)}. Since |V,|— 0 if ReA —+o0, 1 =V, is invertible for large
values of ReA . By the theorem of Steinberg [17], the function 2 — (I —=V,)™ is meromorphic in

the complex domain, and hence the set A is a discrete set whose elements are poles of (1 —V,)™
of finite order.

Now we shall make use of positive operator theory once more. Our main purpose here is to
determine the dominant singular point, i.e., the element of the set A with the largest real part.
From (5.16) and (5.17), the dominant singular point gives the growth bound of the semigroup T (t)

generated by A+ C . First we will show that:

Lemma 5.3
Suppose that the following conditions hold:

1., .
p_lj(rm)<exp(_7/jrm)9 (J =:L2,“',n). (5.18)
i
Then the operator V,,4 € R is nonsupporting with respect to X, and the following holds:

llim r¢yv,)=+o, ﬂlim r¢v,)=0. (5.19)
Proof

Since T1(&) — exp(—ng)J‘j ;/J.H(a)e7ja is an increasing function of 77, (j =12,---,n), we have:
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(&) -exp(—,6)[ 7,(a)e""da
> 11(¢) - exp(—7,4) |, 7,T1(a)e”"da

-11() - ep(-y, O, 1) —da

=11(&) - exp(~7, &) (@)e ™™ [ - eha%da]

= 1(&) - exp(-7, H)N(E)e” -1+ [ 2" (2)I1(a)da]

= exp(—7,6) - |, exp(—7, (- a) 4" (@)1(@)da

(5.20)

=exp(—y,—§)—%i;‘(rs)

1.,
2 exp(_j/jrm) _p_lj (rm)'
i

In the following, we will show that Assumption 5.4 guarantees that the operator V, is strictly
positive. In fact, from (5.13) and 5.14 we can see that :

(o) =" 9B (0. ON(E)exp(=4(E ~n))
(&) -exp(7,) [ 7,11@)exp(y,a)dalds (521)

> [" 3B, (0, N () exp(-A(E - ) exp(7,1,) —%i}‘(rm)]dcf.

and :
FACIE Z 2:i(0.1)
22 [ 0By (@ ONOEP(AE P70~ 1)1 522)
=Y 6,0 P (@ N7, Ende,
where:
G,(r,) = exp(—7,T,) —&i;‘(rm), 7, (E7) = eXp(=A(E 7))
If we define G, (r,) = min{G,(r,),G,(r,), --,G,(r,)}, we can obtain :
/’{/1 (aap) Z GO(rm)(Dﬁ (O-an) (523)

From the above discussion we know that if conditions 5.18 hold, then the operator V,,A € R is
positive.
Therefore, in order to show the nonsupporting property of V,,4 € R, it suffices to prove that

the integral operator F , defined by :

F )0 =["e.(c.mw(mdn, veX, (5.24)
is nonsupporting. It is easy to verify the inequality :

32



Xi-Chao Duan, Xue-Zhi Li, Souvik Bhattacharya & San-Ling Yuan

Jtiltﬂl//2<f/1,l//>e, e=le X, weX, (5.25)
where the linear function f, is defined by:

(fop) =], 1], SOCON OO, (x.mxly (7).
Then it follows that for all integers n,
Ty (fLp)(f,.e) e
Since f, is strictly positive and the constant function e =1 is a quasi-interior point of L'(0,r.), it
follows that <F,ﬁn‘21//> >0 for every pair w e X,, {0}, Fe X, {0}. Then § ,A€R is

nonsupporting. Next we show (5.19).
From (5.23) and (5.25), we obtain:

Vo 2Gy(r)F v 2G,(r,)(f,.w)e, 1eR, weX..
Taking duality pairing with the eigenfunctional F, of V, that corresponds to r(V,), one has:

r(\/ﬂ)<F/I=l//> 2 Go(rm)<F/1:e>< f/wV/>-
If we let i =€, we arrive at the inequality:

r(v,) =Gy (r,)(f,.e),
where:
(fae)=[" 7 sCONGO, (en)dedny
= [ [ SOON(x), (x,)dndlx
- jo s()N (%) jox 7, (X,7)dndx.
and:

(f,.e)>¢ j N(X) jo* exp(=A(x — 7)) drdx

n 1
=¢[" N (%) [L- exp(-2x)]dx.
Since N(x) >0 for x e[r, —x,r,,), we know that:
ilim r(v,) = +oo.
On the other hand, we obtain:

Vi <Ty<ty< <gl,l//>e, AeR, weX,,
where the positive functional g, is defined by:

(922w) =M 7 [[ ™ NGO, (x.m)xly (7).
where:

M= maX{eSSSUpﬂl(G,é:),‘ "9esssupﬁn (695)}7 pO = maX{p17 p2a'”: pn}
Then we obtain the estimate:

rm l
r(V,) (g:,¢) = npoM [ N()—[L—exp(-Ax)]dx.
From which we can conclude that:
limr(v,)=0.

A—>+0

This completes the proof.
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From condition (5.18) and the expression (5.22), the kernel y,(a, p) is strictly decreasing as a
function of A€ R . Using Proposition 4.3, we know that the function 4 —r(V,) is strictly
decreasing for 4 € R. Moreover, if there exists 4 € R such that r(V,) =1, then A € A, because

r¢v,) e P,(V,). From the monotonicity of r(V,) and (5.19), it is easy to see that the following
holds:

Lemma 5.5
Under condition (5.18), there exists a unique 4, € RN A such that r(\/%) =1, and 4, >0 if

riv,)>1; 4,=0if r(V,) =1; 4, <0 if r(V,) <1.
Next, by using the similar argument as Theorem 6.13 in [18] we can prove that A; is the
dominant singular point:

Lemma 5.6
Suppose that condition (5.18) holds. If there existsa 4 € A,A # 4,, then ReA < 4.

Proof
Suppose that A€ A and V,w =y , then |V, |=|w |, where |y |(a)=|w(a)|. From the

expression (5.22), it follows that V., | [>| w |. Taking duality pairing with F,,, € X on both
sides, we have I'(Ve,,)(Feerol ¥ )2 (Feeiolw [) from which we conclude that r(Vg,,)>1,
because F,, is strictly positive. Since r(V,),A R is a decreasing function, we obtain that
ReA</4,. If ReA=4,, then V, |y |=[y|. In fact, if we suppose that V, |y |>|y |, taking
duality pairing with the eigenfunction F; corresponding to r(\/ﬂo):l on both sides yields
(Fo.lw |)>(Fy.lw|) which is a contradiction. Then we can write that |y |=cy, for some
constant ¢ which we may assume to be one, where y, is the eigenfunction corresponding to
r(vV,)=1.Hence, y(a)=w,(a)exp(iv(a)) for some real-valued function v(a). If we substitute
this relation into V, y, =|V,y | we obtain:

Zn: er Lr p;[I1(&) - exp(—yjf)f y,I1(a)exp(y;a)da]
B (0, S)N(E)exp(=A(& —n))dSy, (17)d7
= Zn_: form Lr p;[I1(S) - exp(—yj(f)jj yT1(a)exp(y;a)da]

|8, (0, EN(E)e e Dd £y ()l .
From Lemma 6.12 in [18], it follows that —ImA(&7) +v(77) = € for some constant &. Using the
relation Vi =y we obtain that eV, w, =", So & =v(r7), which implies that ImA =0.
This completes the proof of Lemma 5.6.

Theorem 5.7
Under condition (5.18), the equilibrium state

(s* (a)a I: (a)a I; (a)a ) I: (a))T
for (2.7,)-(2.7,,,) is locally asymptotically stable if r(V,) <1 and locally unstable if r(V,) >1.
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Proof
From Lemma 5.5 and 5.6, we conclude that sup{Red:1€ P (V,)}=4,. Hence it follows that

S(A+C)=sup{Rei:1eP (V,)}<0 if r(V,)<1, and s(A+C)>0 if r(v,)>1. This
completes the proof.

Now we can state the local stability results for our epidemic model:

Theorem 5.8 (Local stability results)
Let r(T) be the spectral radius of the operator T defined by (4.5). Then the followings hold:

(1) If r(T) <1, the trivial equilibrium point of (2.7,)-(2.7,,,,) is locally asymptotically stable.
(2) If r(T) >1, the trivial equilibrium point of (2.7,)-(2.7,,,) is unstable.

(3) If r(T) >1 and condition (5.18) holds for an endemic steady state, it is locally asymptotically
stable.

Proof
The proof is similar with ([19], Theorem 5.8).

We have not determined what kind of conditions could guarantee (5.18). Since it would be
difficult to answer the question if we consider it under most general conditions.

6. Conclusions

Dividing the infected class into several compartment, provides an opportunity to look into the
effect of the infection under the variation of the viral load. It also provides a platform to discuss the
nature of the disease progression as the viral load varies among different classes. The age-
structured behavior of the model adds in explaining the distribution of the disease in separate
classes by age. This paper presents the model and also focusses on the various threshhold
parameters which guides the existence of the endemic solutions. From the practical point of view,
these results can be utlized in controlling the progression of the disease with the change in the viral
load. This is a general model, which discusses the effect of disease in general. This can be utilized
in discussing the effect of specific diseases by suitable choice of parameters. Moreover this paper
assumes permanent immunity in the individuals once they recover. This nature can be relaxed to
increase the scope of discussion by modifying the model to include diseases which also posses
temporary immunity in recoved individual.

Acknowledgements

Research is supported partially by the NNSF of China (11271314) and Plan For Scientific Innovation Talent
of Henan Province (144200510021)

References

1. Peiris J.S. M., Chu C. M., Cheng V. C. C., Chan K. S. etc., ‘Clinical progression and viral load in a

community outbreak of coronavirus-associated SARS pneumonia: a prospective study’, The Lancet, 361

(2003) , 1767-1772.

Anderson R.M. and May R.M., 'Infectious Diseases of Humans', Oxford University Press, Oxford, 1991.

Esteva L., Vargas C., ‘Analysis of dengue disease transmission model’, Math. Biosci., 150 (1998), 131-

151..

4. Hyman J.M., LiJ., “An intuitive formulation for the reproduction number for the spread of disease in
heterogeneous population’, Math. Biosci., 167 (2000), 65-86.

5. Hyman J.M,, Li J., Stanley E.A., ‘The differential infectivity and staged progression models for the
transmission of HIV’, Math. Biosci., 155 (1999), 77-109.

6. Wang L.D., Li J.Q., ‘Global stability of an epidemic model with nonliner incidence rate and differential

wn

35



10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

Xi-Chao Duan, Xue-Zhi Li, Souvik Bhattacharya & San-Ling Yuan

infectivity’, Applied Mathematics and Computation, 161 (2005), 769-778.

Ledergerber B., ‘Clinical progression and virological failure on highly active antiretroviral therapy in
HIV-1 patients: a prospective cohort study’, Lancet (London, England), 353.9156 (1999), 863-868.
Busenberg S., Castillo-Chavez C., ‘A general solution of the problem of mixing of subpopulations and
its application to risk-and age-structured epidemic models for the spread of AIDS’, Mathematical
Medicine and Biology, 8.1 (1991), 1-29.

Webb G.B., ‘“Theory of Nonlinear Age-Dependent Population Dynamics’, New York and Basel: Marcel
Dekker, 1985.

Sawashima 1., “‘On spectral properties of some positive operators’, Nat.Sci.Dep. Ochanomizu Univ., 15
(1964), 53-64.

Niiro F. and Sawashima I., “‘On the spectral properties of positive operators in an arbitrary Banach
lattice and problem of H.H.Schaefer’, Sci.Paper College Gen. Ed. Univ. Tokyo, 16 (1966) 145-183.
Marek 1., ‘Frobenius theory of positive operators: comparison theorems and applications’, SIAM J.Appl.
Math., 19 (1970), 607-628.

Yosida K., ‘Functional Analysis, 6th Edition’, Berlin, Springer, 1980.

Krasnoselskii M.A., ‘Positive Solutions of Operator Equations’, Groningen: Noordhoff, 1964.

Kato T., ‘Perturbation Theory for Linear Operators, 2nd Edition’. Berlin, Springer, 1984.

Nagel R.,(eds.) ‘One-Parameter Semigroups of Positive Operators’, Lect. Notes Math. V.1184, Berlin,
Springer, 1986.

Steinberg S., ‘“Meromorphic families of compact operators’, Arch.Rat.Mech.An., 31(1968), 372-380.
Heijmans H.J.A.M., ‘“The dynamical behaviour of the age-size-distribution of a cell population. In:
J.A.J.Metz, O.Diekmann(eds.) The dynamics of physiologically Structured Populations. (Lect. Notes
Biomath., V.68, 185-202"), Berlin, Springer, 1986.

Li Xue-Zhi, Geni Gupur, Zhu Guang-Tian, ‘Threshold and stability results for an age-structured SEIR
epidemic model’, Computers and Mathematics with Application, 42 (2001), 883-907.

36



	Abstract

