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Abstract
A noniterative algorithm for root refinement of univariate polynomials with real or complex coef-
ficients is introduced. The method uses a convolutional model which is fitted onto the coefficient
sequence of a given polynomial. If initialized with root estimates from a conventional polynomial
root finding algorithm likePOLZEROS, the algorithm can double the number of accurate digits of
these root estimates. Simulation results are shown for several types of polynomials which typ-
ically occur in signal and array processing. For instance, random coefficient polynomials up to
degreen = 64000, where we reduced the absolute root errors of thePOLZEROS root-finder by a
factor of approximately 1000, or the roots of a complex chirppolynomial of degreen = 2000,
where we reduced the absolute root errors by a factor of 10000using the new method. Fortran
subroutines of this high precision root refinement algorithm for real or complex polynomials are
available upon request.
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1. Introduction

Root finding can be a demanding problem depending on the coefficient characteristics of a given
polynomial. Random coefficient polynomials can be rooted upto virtually unlimited degrees as
a consequence of the limited variance of their coefficients.On the other hand, Wilkinson-type
polynomials [1] can be rooted only up to a degree ofn = 20 in a standard double precision
floating-point environment because of the enormous growth of their coefficients.

Our target are high-degree polynomials with moderate coefficient variance. Polynomials of
this kind typically occur in signal and array processing [2]-[10]. Examples are thez-transform
polynomials of long random sequences, for instance in problems of detecting signals in noise. The
roots of these polynomials are tightly grouped around the unit circle in thez-plane. Examples of
this kind can be found in seismic signal processing, in sonarand radar, and in speech processing.

The degrees of polynomials in these areas can be excessivelyhigh. Hence finding the roots
of these polynomials is a computationally demanding problem. Multiprecision root finders like
MPsolve [11] cannot be applied here because of excessive runtimes. Standard double precision
root finders are sufficiently fast but inaccurate.

One of the top double precision root finders isPOLZEROS [12], a modern and reliable imple-
mentation of the Aberth-Ehrlich method [13], [14]. We can demonstrate experimentally that the
accuracy of the root estimates obtained fromPOLZEROS can be improved dramatically for typi-
cal signal and array processing type polynomials when the root estimates are passed through a
properly constructed root refinement algorithm.

We propose a complex variant of polynomial fitting for root refinement. The principle is
known from [15], [16] and [17]. In its root refinement variant, the method approximates a given
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“clean” coefficient sequence of a degreen polynomial with a model sequence formed as the
convolution of a degree-1 desired root subpolynomial and a degreen − 1 complementary sub-
polynomial. Initially, the desired root subpolynomial is formed using a given coarse root estimate.
The complementary subpolynomial is initially determined in the least squares sense. The fitting
step then optimizes both the desired root and the complementary subpolynomial sequences si-
multaneously for a perfect match with the given clean input polynomial sequence. Hereby, a root
estimate of maximum accuracy is obtained. The procedure is repeated independently for each
root of interest.

Typical improvements in root accuracy obtained by the method are a factor of 1000 reduction
in absolute root errors for random coefficient polynomials of degreen = 64000, or typically 3
additional accurate mantissa digits in this case. Another example shown are the roots of a complex
chirp polynomial of degreen = 2000, where we obtain 4 additional accurate mantissa digits. In
all cases, we usedPOLZEROS as initial root finder. The overall runtime ofPOLZEROS with post
refinement is about twice the runtime of the plainPOLZEROS algorithm, which is one of the fastest
root finding algorithms in double precision arithmetic known at this time.

This paper is organized as follows. In Section 2, we develop the post-fitting algorithm for
complex polynomial root refinement. In Section 3, we extend our technique to polynomials with
real coefficients. A special technique for handling complexconjugate root pairs is introduced. De-
tailed numerical examples demonstrating the effectiveness of our post fitting refinement method
are shown in Section 4. Section 5 presents the conclusions.

2. The Complex Post-Fitting Refinement Algorithm

Consider the problem of calculating all roots{zk, k = 1, 2, . . . , n} of the following monic poly-
nomialA(z) of degreen:

A(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an−1z + an , (2.1)

with complex coefficients{ak, k = 1, 2, . . . , n}. We assume that we have a set of coarse root es-
timates{ẑk, k = 1, 2, . . . , n} at our disposal. A good choice for computing these initial root esti-
mates isPOLZEROS [12]. This program is an implementation of a simultaneous root-finder that can
be traced back to algorithms of O. Aberth [13] and L.W. Ehrlich [14]. The Fortran codePOLZEROS
of the Aberth-Ehrlich (ABE) algorithm can be downloaded fromhttp://bezout.dm.unipi.it/.
This program and method is very fast and stable in a sense thatdifficult scenarios are handled
without excessively large errors. Hence the method is a goodinitial root estimator.

In most cases of interest,POLZEROS produces its errors in a way suitable for a substantial
correction by appropriate postprocessing refinement. A tricky algorithm for achieving this is next
developed. For this purpose, we decompose the givenA(z) into the product of a linear factor
C(z) and a reduced degree polynomialB(z) as follows,

A(z) = B(z)C(z) , (2.2)

where:

B(z) = zn−1 + b1z
n−2 + · · ·+ bn−2z + bn−1 , (2.3)

C(z) = z + c , (2.4)

and−c is a root ofA(z). We apply this model to every root ofA(z). Consequently, we haven
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cases constituted by:
c = −zk ; k = 1, 2, . . . , n . (2.5)

Suppose we have a set of initial root estimates{ẑk, k = 1, 2, . . . , n} from an algorithm like
POLZEROS at our disposal. Then we will be able to construct a highly effective refinement algo-
rithm for computing updates∆ck so that

zk = ẑk −∆ck ; k = 1, 2, . . . , n , (2.6)

where{zk} is a refined set of root estimates with highest possible accuracy. The algorithm for
computing the necessary root updates{∆ck, k = 1, 2, . . . , n} is next developed. Given the initial
setting

c = −ẑk ; k = 1, 2, . . . , n , (2.7)

we define a fitting error polynomialE(z) as follows:

E(z) = A(z)−B(z)C(z) . (2.8)

The goal is a modification of thec that constitutesC(z) and the coefficients ofB(z) simulta-
neously in a way so that the coefficients ofE(z) are minimized. This gives rise to a nonlinear
optimization or “fitting” problem, because a polynomial productB(z)C(z) is fitted onto a given
polynomialA(z). Polynomial products are formed by convolution of the underlying coefficient
sequences. Hence error equation (2.8) can be posed in terms of the following convolutional model
fitting problem:
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where the{ek, k = 1, 2, . . . , n} are the coefficients of error polynomialE(z). Convolutional
models have proven useful in special areas of polynomial root finding [12], [13]. Let us rewrite
(2.9) more compactly as follows:

e = ac −Cb . (2.10)

Notice from (2.9) thatC is a n × n − 1 bidiagonal matrix with a subdiagonal constituted by
parameterc.

In each of then cases, we assume thatc is initialized with an initial coarse root estimate
according to (2.7). The optimization procedure is computedfor each of the given{ẑk, k =
1, 2, . . . , n} to obtain the refined set{zk, k = 1, 2, . . . , n}. A first step towards the refined set is
an optimization of theb-parameters in (2.9) in the least squares sense. For this purpose, (2.9) is
premultiplied with a sequence ofn − 1 complex Givens plane rotations formally represented by
ann× n unitary matrixG as follows:

Ge = Gac −GCb . (2.11)

Then−1 complex plane rotors inG must be adjusted so that thec-subdiagonal inC is annihilated
by unitary transformations. Consequently, we obtain:

GC =
[

R
0 . . . 0

]

, (2.12)
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whereR is an upper-right bidiagonal triangular matrix. Moreover,define:

Gac =
[

d
δ

]

. (2.13)

Assuming thatC admits a QR-factorization

C = QR ; QHQ = I , (2.14)

we can see that (2.12) implies the following structured representation ofG:

G =

[

QH

qH

]

, (2.15)

whereq spans the one-dimensional null space ofC. Consequently, (2.11) can be rewritten as
follows:

[

QHe

qHe

]

=
[

d
δ

]

−
[

Rb
0 . . . 0

]

. (2.16)

Determiningb so that
Rb = d , (2.17)

implies thatQHe = [0 · · · 0]H , and thereforeb constitutes a least squares solution of overdeter-
mined problem (2.10), as desired.

Finally, it remains to determine the elementary complex Givens plane rotors ofG so that
the bidiagonal matrixC is transformed intoR according to (2.12) using elementary complex
Givens plane rotationsΓ. Each of these elementary transformations must be adjustedso that the
following complex nulling problem is solved:

[

r1
0

]

= Γ
[

c1
c2

]

, (2.18)

whereΓ is the2× 2 complex Givens plane rotor:

Γ =
[

α β∗

−β α

]

; ΓHΓ = I , (2.19)

ρ =
√

|c1|2 + |c2|2 , (2.20)

α =
|c1|

ρ
, (2.21)

β = α
c2

c1
. (2.22)

We are working downwards sucessively from top-left to bottom-right along the main diagonal
and subdiagonal ofC in (2.12) withc1 denoting a main diagonal element andc2 denoting the cor-
responding subdiagonal element, respectively. Then ther1 of (18) is the resulting main diagonal
element ofR in (2.12).

Once we have computed the vectorb, we can proceed with a computation of the desired
update∆c required in refinement step (2.6). For this purpose, consider the following linear Taylor
series expansion of the fitting errore of (2.9) or (2.10),

e(p) = e(p0) + F(p0)(p− p0) , (2.23)
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wherep0 is an initial parameter vector comprising both the least squares estimatedb of (2.17) as
well as thec obtained via initialization according to (2.7):

p0 =
[

b
c

]

, (2.24)

andF(p0) denotes the Jacobian of the fitting errore. We can easily verify from (2.9), (2.10) that:
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[
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A comparison of (2.25) with (2.9) and (2.12) reveals that a transformation ofF(p0) with exactly
the same sequence of elementary complex Givens plane rotationsG as in (2.11) will transform
F(p0) into an upper-right triangular matrix of the following form:

GF(p0) = −
[

R g
0 · · · 0 γ

]

. (2.26)

Denoting the desired updating vector as:

∆p =
[

∆b
∆c

]

= p− p0 , (2.27)

we can see that the linearized error equation (2.23) can be rewritten as follows:

e(p) = e(p0) + F(p0)∆p . (2.28)

By setting
e(p) = [0 · · · 0]H , (2.29)

we obtain ann× n system of linear equations for the vector of updates∆p:

−F(p0)∆p = e(p0) , (2.30)

wheree(p0) = e is the error vector of (2.10) computed using LS-parameter vector b of (2.17)
and the initialc of (2.7). To solve (2.30), recall from (2.26) and (2.16) thatthis system appears
conveniently transformed into upper-right banded triangular form as follows:

[

R g
0 · · · 0 γ

] [

∆b
∆c

]

= Ge =

[

QHe

qHe

]

=
[

d−Rb
δ

]

. (2.31)

Since we are performing only a single iteration, we are not interested in computing∆b explicitly.
Only the updating parameter∆c is computed as follows:

∆c =
δ

γ
, (2.32)
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where

δ = qHe , (2.33)

γ = qH

[

1
b

]

. (2.34)

However,q is never formed explicitly. We obtainδ as the bottom component of filtered sequence
e and obtainγ as the bottom component of filtered sequence

[

1, bH
]H

, where then− 1 elemen-
tary complex Givens rotors ofG constitute an orthogonal filter [18] acting on these sequences.
More explicitly, a filtering of thee-sequence comprises the following transformations:

[

e′1
e′2

]

=
[

α1 β∗

1

−β1 α1

] [

e1
e2

]

, (2.35)

[

e′′
k

e′
k+1

]

=
[

αk β∗

k

−βk αk

]

[

e′
k

ek+1

]

; k = 2, 3, . . . , n− 1 , (2.36)

or compactly:

e′1 = e1 , (2.37)

e′k = −βk−1e
′

k−1 + αk−1ek ; k = 2, 3, . . . , n . (2.38)

Finally, theδ of (2.33) is obtained as the bottom component of the filterede-sequence as follows:

δ = e′n . (2.39)

In the same fashion, an evaluation of (2.34) yields:

b′1 = −β1 + α1b1 , (2.40)

b′k = −βkb
′

k−1 + αkbk ; k = 2, 3, . . . , n− 1 , (2.41)

with
γ = b′n−1 . (2.42)

The root updating parameter∆c is then computed according to (2.32) and the root is finally
updated according to (2.6). This completes the complex rootrefinement algorithm.

In summary, for each given initial root estimateẑk, this refinement algorithm comprises the
following steps:

• Initialize c according to (2.7).

• Compute the LS-solution vectorb via (2.12), (2.13), and (2.17), using (2.18) - (2.22).

• Compute the error vectore from (2.9).

• Run the filters (2.37) - (2.39) and (2.40) - (2.42).

• Calculate∆c according to (2.32).

• Finally calculate the refined rootzk according to (2.6).

This refinement algorithm is available in terms of a Fortran subroutinepost_fit, which is a part
of an overall packagefit_polzeros for high-precision complex polynomial root finding. This
overall package also calls the originalPOLZEROS program [12] as an initial root estimator.
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3. A Step to Real Coefficient Polynomials

The givenfit_polzeros algorithm can also be applied to polynomials with real coefficients. In
this case, the results do not automatically reflect the fact that complex roots must appear in com-
plex conjugate pairs. Moreover, real root approximations have absolutely small but nonvanishing
imaginary parts when a root-finder for complex polynomials is used.

These problems can be eliminated by means of complex conjugate root averaging. This
method transforms approximate complex conjugate pairs into perfect complex conjugate pairs
and removes small imaginary parts from real root estimates.

Suppose we have given a set of refined complex root estimates{zk} from an algorithm like
fit_polzeros at our disposition. A related set{z∗

k
} is computed by complex conjugation. Next

consider two elementsz1 andz2 of set{zk} and a related pair of elements of set{z∗
k
}:

z1, z2 ∈ {zk} , (3.1)

z∗1 , z
∗

2 ∈ {z∗k} . (3.2)

The following model assumptions will hold in cases wherez1 andz2 represent a complex conju-
gate root pair:

z1 = z0 + ǫ1 , (3.3)

z2 = z∗0 + ǫ2 . (3.4)

z0 represents the true complex root andǫ1 andǫ2 are independent and generally different complex
estimation errors. This results in the following undesirable property:

z2 6= z∗1 . (3.5)

We will now eliminate this annoying problem that often occurs with complex root estimators
when applied to real coefficient polynomials. Recall the related roots of the complex conjugate
set (3.2). According to model assumptions (3.3) and (3.4), these related complex conjugate roots
must attain the following form:

z∗1 = z∗0 + ǫ∗1 , (3.6)

z∗2 = z0 + ǫ∗2 . (3.7)

Now the set{z∗
k
} is mapped into a sorted set{wk} so that:

n
∑

k=1

|zk − wk| = min , (3.8)

and an averaged set{ẑk} is computed via:

ẑk =
1

2
(zk +wk) ; k = 1, 2, . . . , n . (3.9)

The shortest distance association sort of (3.8) will ensurethat root estimates like (3.3), (3.4) with
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complex conjugates (3.6), (3.7) will be averaged as follows:

ẑ1 =
1

2
(z1 + z∗2) = z0 +

1

2
(ǫ1 + ǫ∗2) = z0 + ǫ̂0 , (3.10)

ẑ2 =
1

2
(z2 + z∗1) = z∗0 +

1

2
(ǫ∗1 + ǫ2) = z∗0 + ǫ̂∗0 , (3.11)

where

ǫ̂0 =
1

2
(ǫ1 + ǫ∗2) (3.12)

is an averaged estimation error. The averaged root estimates ẑ1 andẑ2 will now be strictly related
by complex conjugation, as desired. Moreover, operation (3.9) can be interpreted as a variant
of phased averaging. The true informationz0 will add up “in voltage” while the statistically
independent random complex estimation errors will add up “in power”. Hence another welcome
side-effect of this operation is an improvement of the signal-to-noise ratio of the root estimates
by a factor of 3 dB. In the case of real coefficient polynomials, we can apply the method to
fit_polzeros, but also to thePOLZEROS algorithm.

Finally, let us study the effect of this “complex phased averaging” operation (3.9) in the
presence of real root estimates. For this purpose, suppose again that we pick out two samples
z1 andz2 of set{zk}. In the case of two real roots, these samples satisfy the following model
assumptions:

z1 = r1 + ǫ1 , (3.13)

z2 = r2 + ǫ2 , (3.14)

wherer1 andr2 represent the ideal real roots, and theǫ’s are statistically independent complex
errors. Consequently, the related complex conjugate set elements will appear in the form:

z∗1 = r1 + ǫ∗1 , (3.15)

z∗2 = r2 + ǫ∗2 . (3.16)

As a consequence of the fact that complex conjugation does not alter a real number, it will turn
out that complex phased averaging according to (3.9) will result in the following averaged real
root estimates:

ẑ1 =
1

2
(z1 + z∗1) = r1 +

1

2
(ǫ1 + ǫ∗1) = r1 + ǫ̂1 , (3.17)

ẑ2 =
1

2
(z2 + z∗2) = r2 +

1

2
(ǫ2 + ǫ∗2) = r2 + ǫ̂2 , (3.18)

where:

ǫ̂1 =
1

2
(ǫ1 + ǫ∗1) , (3.19)

ǫ̂2 =
1

2
(ǫ2 + ǫ∗2) , (3.20)

are real errors, because the annoying complex error components cancel out perfectly, as desired.
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4. Examples

In this section, we demonstrate the effectiveness offit_polzeros for two important classes
of polynomials, namely high-degree random coefficient polynomials and high-degree low coef-
ficient variance deterministic polynomials like, for instance, the z-transforms of complex chirp
sequences and the z-transfer functions of linear phase finite impulse response (FIR) filters.

As a performance criterion we use theabsolute root errorof root numberk denoted by

Ek = |zk − zk| , (4.1)

wherezk is a root obtained from a quadruple precision reference algorithm andzk denotes a root
estimate, obtained either fromfit_polzeros or fromPOLZEROS. Ek is computed for every esti-
mated root, even if tens of thousands of roots are evaluated.These absolute root errors are either
concatenated and displayed like a time series, or they are statistically evaluated in terms of the
probability that anEk exceeds a reference error. These “exceeding error” curves can be inter-
preted as theReceiver Operating Characteristics(ROC) [19] of a root estimator as they display
the probability that an absolute root error exceeds a reference error level which plays the role
of a discriminator threshold. These “exceeding error” or ROC curves are most instructive in the
evaluation of root estimation errors.

4.1 Complex Random Coefficient Polynomials.In the first series of experiments, the coef-
ficients are generated as a complex nearly Gaussian distributed zero-mean white noise random
processes. Polynomials of this kind are encountered in several important application areas, such
as geophysical exploration, underwater acoustics, radar signal processing, and time series anal-
ysis in general. As a consequence of the limited variance of their coefficients, polynomials of
this class can be rooted up to virtually almost unlimited degrees. Moreover, we shall observe
that the roots of these polynomials can be computed amazingly accurately if a proper algorithm
is used, even in cases where it is practically impossible to operate with multiprecision algorithms
like MPSolve [11], because of the excessive runtimes of multiprecision software.

Fig. 1 shows the root scatter plot of a typicaln = 1000 complex random coefficent polyno-
mial.
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Figure 1: Typical root distribution in the complex random coefficients scenario of degreen =
1000.
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We can see that most of the roots are grouped very tightly around the unit circle in the z-plane in
cases of high-degree polynomials with low coefficient variance. However, some roots may lie far
from the unit circle to accomodate the arithmetic and geometric means of all roots, as constituted
by the first and the last elements of the coefficient sequence.

In the first experiment, we generate 10 statistically independent complex random coefficient
polynomials of degreen = 1000 and estimate their roots using thePOLZEROS algorithm on the
one hand, and thefit_polzeros algorithm on the other hand. In both cases, we compute the
absolute root errors according to (4.1) and concatenate allthese root errors of the 10 experiments
to a virtual “time series” of 10000 absolute error samples. Fig. 2 shows these absolute root error
sequences for the two algorithms under study. Throughout this paper, results obtained from the
POLZEROS program are labeled by “ABE” while results from the new programfit_polzeros are
labeled by “FIT”.
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Figure 2: Absolute root errors of 10 trial runs of random coefficients scenarion = 1000. Results
of POLZEROS labeled by ABE. Results of fit_polzeros labeled by FIT.

It is apparent from the absolute error sequences displayed in Fig. 2 thatPOLZEROS suffers from
a relatively high variance of the root errors. However, in our tests all these root estimates are
well located inside the inner basin of attraction of the post-fitting refinement algorithm described
in Section 2 of this paper. This post-fitting algorithm is based on a linear Taylor series expan-
sion of a fitting error. Consequently, its convergence in theinner basin of attraction is locally
quadratic. When initialized with a root estimate from thePOLZEROS algorithm, this post-fitter
will approximatelydouble the number of accurate digits in a single iteration in our tests with
random coefficient polynomials. If a doubling of the number of accurate digits is prevented by
the given numerical resolution, the algorithm produces root estimates with anEk in the range of
the machine precision. In the case of standard double precision arithmetic, we can expect values
of Ek ≈ 1e − 16 or lower. We can easily verify from Fig. 2, that this is well satisfied here.
Moreover, this property is almost independent of the degreen of the polynomials under study. So
this kind of post-fitting realizes almost perfectly an errorbound for the class of complex random
coefficient polynomials and similarly for the two other classes of tested polynomials.
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This is also confirmed by the corresponding exceeding error curves for this experiment, as dis-
played in Fig. 3. The curves in Fig. 3 show the probability that a root error exceeds a reference
error level. For instance, the solid line curve in Fig. 3 confims that after post-fitting, the probabil-
ity that anEk exceeds a value of 1e-16 vanishes almost perfectly. On the other hand, the dashed
line curve in Fig. 3 shows the typical error characteristicsof the plainPOLZEROS algorithm for
this class of polynomials: The errors spread out to unnecessarily large values, with a ramp-like
tail characteristics of the exceeding error curve which is very characteristic for this estimator.
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Figure 3: Probability that an absolute root error exceeds a reference error level in the random
coefficients scenarion = 1000 of Fig. 2. Dashed line: POLZEROS.Solid line: fit_polzeros.

We can proceed with running some more experiments of this kind by successively increasing the
polynomial degreen. The following cases have been studied:

• 32 statistically independent polynomials of degreen = 2000

• 16 statistically independent polynomials of degreen = 4000

• 8 statistically independent polynomials of degreen = 8000

• 4 statistically independent polynomials of degreen = 16000

• 2 statistically independent polynomials of degreen = 32000

• 1 polynomial of degreen = 64000

In each of these cases, we obtain concatenated error sequences of64000 samples each, amenable
to a statistical evaluation. Fig. 4 shows the exceeding error curves for each of these 6 cases,
individually displayed for thePOLZEROS and thefit_polzeros algorithms, where the 6 curves
for POLZEROS appear as dashed lines and the 6 curves forfit_polzeros appear as solid lines in
Fig. 4.

The most instructive result of this experiment is that the 6 individual curves of the exceeding
errors offit_polzeros for polynomials of increasing degrees are almost identicaland match
almost perfectly. This shows that the estimation accuracy of this algorithm is largelyindependent
of the polynomial degree for this class of complex random coefficient polynomials and that the
errors appear almost perfectly bounded by the machine precision level of≈ 1e−16. This property
will not hold for every algorithm. For instance, we can see here from the dashed curves of the
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POLZEROS exceeding errors, that these curves again show the typical ramp-like tail characteristics,
and additionally, grow successively to larger average errors with increasing degreen.
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Figure 4: Probability that an absolute root error exceeds a reference error level in random coef-
ficient scenarios of growing degree. Cases32 × n = 2000, 16 × n = 4000, 8 × n = 8000,
4×n = 16000, 2×n = 32000, and1×n = 64000 examined.Dashed lines: POLZEROS.Solid
lines: fit_polzeros.

Fig. 5 shows the underlyingEk sequences for the two algorithmsPOLZEROS andfit_polzeros
in the case of then = 64000 polynomial.
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Figure 5: Absolute root errors of one trial run of random coefficient scenarion = 64000. Results
of POLZEROS labeled by ABE. Results of fit_polzeros labeled by FIT.

We can see that the largest errors ofPOLZEROS in this case are in the range of 1e-13, while the
errors offit_polzeros appear almost perfectly upper bounded by a value of 1e-16. Hence post-
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fitting decreases the estimation errors at least by a factor of 1000 in the best cases in this example
of a high-degree complex random coefficient polynomial.

4.2 Complex Linear Chirp Signal. Fig. 6 shows the real and imaginary parts of a complex
linear chirp signal of duration 2001 samples with partial Hanning nose/tail taper and a normalized
angular frequency ranging fromω = 0.08π up toω = 0.48π. We are interested in computing all
roots of the z-transform of this complex chirp, giving rise to a complex root finding problem of
degreen = 2000.

Fig. 7 displays the roots of the z-transform of the given complex linear chirp signal computed
by fit_polzeros. We can see that in this case, the roots appear again very tightly lined up
around the unit circle in the z-plane.
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Figure 6: Real and imaginary parts of a complex chirp signal of duration 2001 samples.
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Figure 7: Root distribution of then = 2000 complex linear chirp z-transform polynomial.
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Fig. 8 shows the corresponding absolute root error sequences for the two algorithmsPOLZEROS
andfit_polzeros.
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Figure 8: Absolute root errors of ann = 2000 complex linear chirp z-transform polynomial.
Results of POLZEROS labeled by ABE. Results of fit_polzeros labeled by FIT.

We can see thatfit_polzeros will upper bound the absolute roots errors by≈ 1e − 16 again,
while the errors ofPOLZEROS are excessively high, as expected. This observation is alsoconfirmed
by the corresponding exceeding error curves as displayed inFig. 9.
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Figure 9: Probability that an absolute root error exceeds a reference error level in the complex
chirp scenarion = 2000. Dashed line: POLZEROS.Solid line: fit_polzeros.

A comparison of the exceeding error characteristics ofPOLZEROS in this case of the complex chirp
(Fig. 9) with the exceeding error curves ofPOLZEROS in the case of the random coefficient poly-
nomial as shown in Fig. 4 reveals that we must accept an additional substantial increase of error
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level in the case ofPOLZEROS, if a chirp polynomial instead of a random coefficient polynomial is
used. The estimation accuracy offit_polzeros, on the other hand, remains totally unaltered by
this change from a random coefficient to a deterministic chirp coefficient sequence. In summary,
we conclude that in this example, a post-fitting refinement will improve the root estimates by a
factor of more than 10000 in the best cases.

4.3 Linear FIR Filter z-Transfer Functions. We are now moving to real coefficient polynomials.
Practically interesting cases here are impulse responses of high-degree linear phase FIR filters and
the roots of their z-transforms [20]. Fig. 10 shows the impulse response of a linear phase FIR
lowpass filter of duration 101 samples.
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Figure 10: Impulse response of ann = 100 linear phase FIR lowpass filter.

The computation of the roots of the corresponding z-transfer function of this filter id ann = 100
real polynomial root finding problem. In all cases of this kind with real coefficient polyno-
mials, we apply complex phased averaging, as described in Section 3, to both thePOLZEROS
and fit_polzeros estimation results. The so extended programs are consequently renamed
r_POLZEROS andr_fit_polzeros, respectively.

Fig. 11 shows the corresponding root scatter plot of the z-transfer function of this linear phase
FIR lowpass filter of ordern = 100, computed usingr_fit_polzeros. We can see that this root
scatter plot shows the typical tube-like characteristics of the root locations in the passband of the
filter.
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Figure 11: Roots of the z-transform of then = 100 linear phase FIR lowpass filter impulse
response.
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Fig 12 shows the corresponding sequences of absolute root errors, as obtained usingr_POLZEROS
on the one hand, andr_fit_polzeros on the other hand as root estimators.
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Figure 12: Absolute root errors in then = 100 linear phase FIR lowpass filter scenario. Results
of r_POLZEROS labeled by ABE. Results of r_fit_polzeros labeled by FIT.

We can see that these impulse response sequences no longer share the bounded variance char-
acteristics of the coefficients as well as the former random and chirp sequences. Hence, as a
consequence of higher coefficient variances, the root estimation errors will grow to larger val-
ues. The absolute root estimation errors grow to maximum values of≈ 1e − 15 in the case of
r_fit_polzeros, and even to maximum values of≈ 1e− 12 in the case ofr_POLZEROS. How-
ever, a substantial reduction of the estimation errors is again achieved by using the post-fitting
refinement concept.

A second experiment of this kind with a linear phase FIR lowpass of much higher degree
n = 1000 is finally examined. Fig. 13 shows the corresponding impulseresponse of duration
1001 samples.
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Figure 13: Impulse response of ann = 1000 linear phase FIR lowpass filter.
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Fig. 14 shows the roots of the corresponding z-transfer function of this filter, computed using
r_fit_polzeros.
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Figure 14: Roots of the z-transform of then = 1000 linear phase FIR lowpass filter impulse
response.

A comparison with the root scatter plot of then = 100 filter of Fig. 11 reveals that this higher
degree filter has a much lower relative bandwidth, characterized by a short and narrow tube of
passband roots aroundz = 1 in the z-plane. The stopband roots are all perfectly lined upon the
unit circle in the z-plane of Fig. 14.

Fig. 15 shows the corresponding absolute root error sequences. These sequences con-
firm an impressive improvement of estimation accuracy by a factor of 10000 approximately for
r_fit_polzeros over the plainr_POLZEROS algorithm.
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Figure 15: Absolute root errors in then = 1000 linear phase FIR lowpass filter scenario. Results
of r_POLZEROS labeled by ABE. Results of r_fit_polzeros labeled by FIT.
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4.4 Runtimes. A final concern are the runtimes of the two algorithms under comparison. As a
rule of thumb, we found that the runtime offit_polzeros is approximately by a factor of 2.0 -
2.5 higher than the runtime of the conventionalPOLZEROS algorithm. Table 1 shows the practical
runtimes for the random coefficients scenario of growing degrees. In the other cases, we observed
very similar runtimes. This indicates that the overall runtime of the algorithms will not depend
significantly on the characteristics the particular coefficient set as long as we stay within this class
of high-degree polynomials with relatively limited coefficient variations, as typical in application
areas like signal processing.

Table 1: Runtimes (in seconds) of the plain POLZEROS (ABE) and fit_polzeros (FIT) algorithms
for rooting of one complex random coefficient polynomial of degreen.

degreen 1000 2000 4000 8000 16000 32000 64000

ABE 0.123 0.483 1.89 7.34 29.36 117.6 474
FIT 0.300 1.136 4.50 13.89 62.26 256.7 1219
factor 2.44 2.35 2.37 1.89 2.12 2.18 2.57

5. Conclusions

We introduced the principle of complex polynomial fitting asa useful tool for a post-refinement
of complex root estimates. The method requires coarse root estimates from a basic root finding
algorithm as inputs. We found thatPOLZEROS is well suited as initial estimator, because the al-
gorithm is fast, reliable and sufficiently accurate for the initialization of the root estimates inside
the inner basin of attraction of the post-fitting refinement algorithm. Experiments have revealed
that the post-fitting refinement step significantly improvesthe estimation accuracy in many cases
of practical interest. The deeper reasons for the demonstrated performance offit_polzeros are
twofold: On the one hand, both the error equation (2.9) as well as the Jacobian (2.25) are only
linear functions of the underlying coefficients. This results in a relatively large inner basin of at-
traction with the consequence that the algorithm adapts well even in cases of relatively inaccurate
initial root estimates. On the other hand, theδ andγ parameters used for computing the update
∆c according to (2.32) are both computed by orthogonal filters (2.37)-(2.39) and (2.40)-(2.42),
andnotby the transversal filters (2.33) and (2.34). This seeminglyminor implementation detail is
in reality the key to the demonstrated numerical accuracy offit_polzeros, particularly in cases
of excessively high polynomial degreesn.
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