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Abstract

A noniterative algorithm for root refinement of univariatelynmomials with real or complex coef-
ficients is introduced. The method uses a convolutional meHieh is fitted onto the coefficient
sequence of a given polynomial. If initialized with rootiesdtes from a conventional polynomial
root finding algorithm likePOLZERQS, the algorithm can double the number of accurate digits of
these root estimates. Simulation results are shown foraketyges of polynomials which typ-
ically occur in signal and array processing. For instanaadom coefficient polynomials up to
degreen = 64000, where we reduced the absolute root errors ofPBieZERQS root-finder by a
factor of approximately 1000, or the roots of a complex clpiglynomial of degree: = 2000,
where we reduced the absolute root errors by a factor of 1080@ the new method. Fortran
subroutines of this high precision root refinement algamitior real or complex polynomials are
available upon request.

2010 Mathematics Subject Classification: 12D05, 12D10.
Key Word and Phrases
Polynomial Root Finding - Root Refinement - Aberth-Ehrlich Method - POLZEROS - Convolution.

1. Introduction

Root finding can be a demanding problem depending on the cieetficharacteristics of a given
polynomial. Random coefficient polynomials can be rootedaupirtually unlimited degrees as
a consequence of the limited variance of their coefficie@s. the other hand, Wilkinson-type
polynomials [1] can be rooted only up to a degreenot= 20 in a standard double precision
floating-point environment because of the enormous grodwtheair coefficients.

Our target are high-degree polynomials with moderate coeffi variance. Polynomials of
this kind typically occur in signal and array processing[[A)]. Examples are the-transform
polynomials of long random sequences, for instance in problof detecting signals in noise. The
roots of these polynomials are tightly grouped around thieaintle in thez-plane. Examples of
this kind can be found in seismic signal processing, in sandrradar, and in speech processing.

The degrees of polynomials in these areas can be exceshigély Hence finding the roots
of these polynomials is a computationally demanding probl®ultiprecision root finders like
MPsolve [11] cannot be applied here because of excessivienesy Standard double precision
root finders are sufficiently fast but inaccurate.

One of the top double precision root finder®®.ZEROS [12], a modern and reliable imple-
mentation of the Aberth-Ehrlich method [13], [14]. We cambmstrate experimentally that the
accuracy of the root estimates obtained frBaL.ZEROS can be improved dramatically for typi-
cal signal and array processing type polynomials when tbeastimates are passed through a
properly constructed root refinement algorithm.

We propose a complex variant of polynomial fitting for roofimement. The principle is
known from [15], [16] and [17]. In its root refinement variatite method approximates a given
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“clean” coefficient sequence of a degreepolynomial with a model sequence formed as the
convolution of a degreé-desired root subpolynomial and a degree- 1 complementary sub-
polynomial. Initially, the desired root subpolynomial @ed using a given coarse root estimate.
The complementary subpolynomial is initially determinadhe least squares sense. The fitting
step then optimizes both the desired root and the complemestibpolynomial sequences si-
multaneously for a perfect match with the given clean infyipomial sequence. Hereby, a root
estimate of maximum accuracy is obtained. The procedurepisated independently for each
root of interest.

Typical improvements in root accuracy obtained by the mettire a factor of 1000 reduction
in absolute root errors for random coefficient polynomidislegreen = 64000, or typically 3
additional accurate mantissa digits in this case. Anotkamgle shown are the roots of a complex
chirp polynomial of degree = 2000, where we obtain 4 additional accurate mantissa digits. In
all cases, we useBlDLZEROS as initial root finder. The overall runtime ®)LZEROS with post
refinement is about twice the runtime of the pla0LZEROS algorithm, which is one of the fastest
root finding algorithms in double precision arithmetic knoat this time.

This paper is organized as follows. In Section 2, we devehagppiost-fitting algorithm for
complex polynomial root refinement. In Section 3, we extendtechnique to polynomials with
real coefficients. A special technique for handling comglexjugate root pairs is introduced. De-
tailed numerical examples demonstrating the effectiveésur post fitting refinement method
are shown in Section 4. Section 5 presents the conclusions.

2. The Complex Post-Fitting Refinement Algorithm

Consider the problem of calculating all rodts;, £ = 1,2, ...,n} of the following monic poly-
nomial A(z) of degreen:

AR) = 2"+ a12" P a2 2+ Fan_12+a, (2.1)
with complex coefficient§ax, k = 1,2,...,n}. We assume that we have a set of coarse root es-
timates{Z;,k = 1,2,...,n} at our disposal. A good choice for computing these initiak esti-

mates iPOLZERQS [12]. This program is an implementation of a simultaneows-fmder that can
be traced back to algorithms of O. Aberth [13] and L.W. Eltr{it4]. The Fortran codBOLZERQOS
of the Aberth-Ehrlich (ABE) algorithm can be downloadedfrbttp: //bezout .dm.unipi.it/.
This program and method is very fast and stable in a sensaliffiatilit scenarios are handled
without excessively large errors. Hence the method is a gotdl root estimator.

In most cases of interestOLZEROS produces its errors in a way suitable for a substantial
correction by appropriate postprocessing refinement.ckytralgorithm for achieving this is next
developed. For this purpose, we decompose the gifer) into the product of a linear factor
C(#) and a reduced degree polynomi2(z) as follows,

A(z) = B(2)C(z) (2.2)

where:
B(z)=2"" 402" 24 by oz + by (2.3)
C(z)=z+c , (2.4)

and—cis aroot of A(z). We apply this model to every root of(z). Consequently, we hawe
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cases constituted by:
c=—zp; k=1,2,....n . (2.5)

Suppose we have a set of initial root estimafés, k = 1,2,...,n} from an algorithm like
POLZEROS at our disposal. Then we will be able to construct a highlgatite refinement algo-
rithm for computing updateAc;, so that

Zr=2r—Acr; k=1,2,....n (2.6)

where{z} is a refined set of root estimates with highest possible acgurThe algorithm for
computing the necessary root updafés;,, k = 1,2,...,n} is next developed. Given the initial
setting

c=—Z%;; k=1,2,....n 2.7)

we define a fitting error polynomidl(z) as follows:
E(z) = A(z) — B(2)C(z) . (2.8)

The goal is a modification of the that constitutes”(z) and the coefficients oB(z) simulta-
neously in a way so that the coefficients 6fz) are minimized. This gives rise to a nonlinear
optimization or “fitting” problem, because a polynomial guet B(z)C/(z) is fitted onto a given
polynomial A(z). Polynomial products are formed by convolution of the ufydeg coefficient
sequences. Hence error equation (2.8) can be posed in tétihesfollowing convolutional model
fitting problem:

e1 aj] —c¢ 1
€9 as cl 2;
= =] Sl (2.9)
€n—1 (n—1 -1 b ’
€n an, c n—1
where the{er, & = 1,2,...,n} are the coefficients of error polynomiél(z). Convolutional

models have proven useful in special areas of polynomidlfinding [12], [13]. Let us rewrite
(2.9) more compactly as follows:
e=a.—Cb . (2.10)

Notice from (2.9) thatC is an x n — 1 bidiagonal matrix with a subdiagonal constituted by
parameter:.

In each of then cases, we assume thais initialized with an initial coarse root estimate
according to (2.7). The optimization procedure is computgdeach of the given(z;, k =
1,2,...,n} to obtain the refined s€t, k = 1,2,...,n}. Afirst step towards the refined set is
an optimization of thé-parameters in (2.9) in the least squares sense. For thpegeir(2.9) is
premultiplied with a sequence af— 1 complex Givens plane rotations formally represented by
ann x n unitary matrixG as follows:

Ge =Ga,— GCb . (2.11)

Then—1 complex plane rotors it must be adjusted so that thesubdiagonal irC is annihilated
by unitary transformations. Consequently, we obtain:

cc=[y "] . (2.12)
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whereR is an upper-right bidiagonal triangular matrix. Moreowfine:

Ga.=[§] (2.13)
Assuming thalC admits a QR-factorization
C=QR; Q"Q=1 , (2.14)

we can see that (2.12) implies the following structured esentation ofG:

H
G = [QH] , (2.15)
q
whereq spans the one-dimensional null spaceChf Consequently, (2.11) can be rewritten as
follows: .
Q%e| _[d] [ Rb
e =181-To™) @19
Determiningb so that
Rb=d |, (2.17)

implies thatQ’e = [0--- 0], and thereford constitutes a least squares solution of overdeter-
mined problem (2.10), as desired.

Finally, it remains to determine the elementary complexe@s#/plane rotors oG so that
the bidiagonal matrixC is transformed intdR according to (2.12) using elementary complex
Givens plane rotationE. Each of these elementary transformations must be adjsstétat the
following complex nulling problem is solved:

Bl=rla] . (2.18)
whereTl is the2 x 2 complex Givens plane rotor:
r=[ a} . AP =1 | (2.19)

p =l +lel* (2.20)

el
o = —

: (2.21)
0
B=a2 . (2.22)
Cc1

We are working downwards sucessively from top-left to botiaght along the main diagonal
and subdiagonal af in (2.12) with¢; denoting a main diagonal element andlenoting the cor-
responding subdiagonal element, respectively. Themtlod (18) is the resulting main diagonal
element ofR in (2.12).

Once we have computed the vecter we can proceed with a computation of the desired
updateAc required in refinement step (2.6). For this purpose, condigefollowing linear Taylor
series expansion of the fitting errerof (2.9) or (2.10),

e(p) = e(po) + F(po)(P — Po) (2.23)
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wherepg is an initial parameter vector comprising both the leastsegiestimatet of (2.17) as
well as thec obtained via initialization according to (2.7):

p=["] . (2.24)

andF(pg) denotes the Jacobian of the fitting ereoWe can easily verify from (2.9), (2.10) that:

Je Je Oe Oe
F(po) = [8_131 D 7 Tou %}
1 1
cl b1
L (2.25)
-1
& bn—l

A comparison of (2.25) with (2.9) and (2.12) reveals thaeasformation of(py) with exactly
the same sequence of elementary complex Givens planeorc&i as in (2.11) will transform
F(po) into an upper-right triangular matrix of the following form

GF(po) = — [OR 0 %} . (2.26)

Denoting the desired updating vector as:

ap=[2P]=p-po . (2.27)

we can see that the linearized error equation (2.23) carvirétten as follows:
e(p) = e(po) + F(po)Ap . (2.28)

By setting
e(p)=1[0---0" , (2:29)

we obtain am x n system of linear equations for the vector of updalgs
~F(po)Ap = e(po) (2.30)

wheree(pg) = e is the error vector of (2.10) computed using LS-parametetovéb of (2.17)
and the initialc of (2.7). To solve (2.30), recall from (2.26) and (2.16) thas system appears
conveniently transformed into upper-right banded tridagform as follows:

050 5][22] = Ge= [355} =[5 (2.:31)

Since we are performing only a single iteration, we are ner@sted in computind\b explicitly.
Only the updating parametéxc is computed as follows:

Ac=2 | (2.32)

9
gl
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where

e (2.33)
H)] . (2.34)

qH
qH

0
Y
However,q is never formed explicitly. We obtaifias the bottom component of filtered sequence
e and obtainy as the bottom component of filtered seque{mebH] H, where then — 1 elemen-

tary complex Givens rotors df constitute an orthogonal filter [18] acting on these segegnc
More explicitly, a filtering of thee-sequence comprises the following transformations:

6/ — (3} BT €1
HREHIEE -
e | _ [ ox By e |. . _ B
|:€§€+1:| - |:_ﬁk: ak:| €k41 ’ k= 27 3’ s N 1 5 (236)
or compactly:
qa=er (2.37)
e, = —Pr1€,1 +axrer; k=23,...,n . (2.38)

Finally, theé of (2.33) is obtained as the bottom component of the filtersdquence as follows:

§=e, (2.39)
In the same fashion, an evaluation of (2.34) yields:
by = —p1+aib (2.40)
;:—ﬂkbz_lﬁ-akbk; k=23,....n—1, (2.41)
with
y=0b,_, . (2.42)

The root updating parametexc is then computed according to (2.32) and the root is finally
updated according to (2.6). This completes the complexnefatement algorithm.

In summary, for each given initial root estimatg this refinement algorithm comprises the
following steps:

e Initialize ¢ according to (2.7).

Compute the LS-solution vectdrvia (2.12), (2.13), and (2.17), using (2.18) - (2.22).

Compute the error vecterfrom (2.9).

Run the filters (2.37) - (2.39) and (2.40) - (2.42).

e CalculateAc according to (2.32).

e Finally calculate the refined rosy, according to (2.6).

This refinement algorithm is available in terms of a Fortralbreutinepost_fit, which is a part
of an overall packagéit_polzeros for high-precision complex polynomial root finding. This
overall package also calls the origirlLZEROS program [12] as an initial root estimator.
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3. A Step to Real Coefficient Polynomials

The givenfit_polzeros algorithm can also be applied to polynomials with real cogfits. In
this case, the results do not automatically reflect the fait¢complex roots must appear in com-
plex conjugate pairs. Moreover, real root approximatiosgehabsolutely small but nonvanishing
imaginary parts when a root-finder for complex polynomialsised.

These problems can be eliminated by means of complex cdejugat averaging. This
method transforms approximate complex conjugate paics petfect complex conjugate pairs
and removes small imaginary parts from real root estimates.

Suppose we have given a set of refined complex root estirgatgsfrom an algorithm like
fit_polzeros at our disposition. A related s¢t; } is computed by complex conjugation. Next
consider two elements andz; of set{Z;} and a related pair of elements of et }:

Z1, 29 € {fk} , (3.1)
q e E) (3.2)

The following model assumptions will hold in cases wher@ndz; represent a complex conju-
gate root pair:

Z1 =2z t+€1 (3.3)
22 = ZS —|— 62 . (34)

zo represents the true complex root an@ndes are independent and generally different complex
estimation errors. This results in the following undediegtroperty:

20 #£ 2] . (3.5)

We will now eliminate this annoying problem that often occwvith complex root estimators
when applied to real coefficient polynomials. Recall thated roots of the complex conjugate
set (3.2). According to model assumptions (3.3) and (3)sé related complex conjugate roots
must attain the following form:

s=zte (3.6)
25 =20+ € . (3.7)

Now the set{Z } is mapped into a sorted sg;, } so that:
> [Zk — | = min (3.8)
k=1

and an averaged s§t;,} is computed via:

%k:%(Ekerk); k=1,2...,n . (3.9)

The shortest distance association sort of (3.8) will entwuaeroot estimates like (3.3), (3.4) with
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complex conjugates (3.6), (3.7) will be averaged as follows

) 1 . 1 " R
Zl:5(21—1—2’2):Zo+§(€1+€2):f20+60 5 (310)
1 1
22:5(22—1—,21‘):,26‘4-5(6”{—1—62):z{)k-i-é(’; ) (3.11)
where )
€0 = 3 (€1 + €3) (3.12)

is an averaged estimation error. The averaged root essriyasand 2, will now be strictly related
by complex conjugation, as desired. Moreover, operatiof) (Gan be interpreted as a variant
of phased averaging. The true informatienwill add up “in voltage” while the statistically
independent random complex estimation errors will add nptwer”. Hence another welcome
side-effect of this operation is an improvement of the digoaoise ratio of the root estimates
by a factor of 3 dB. In the case of real coefficient polynomiai® can apply the method to
fit_polzeros, but also to th&0LZEROS algorithm.

Finally, let us study the effect of this “complex phased agarg” operation (3.9) in the
presence of real root estimates. For this purpose, supmzse #hat we pick out two samples
z1 and z, of set{Z;}. In the case of two real roots, these samples satisfy thewisiy model
assumptions:

Z1=1r1+€ , (313)
29 =T9 + € (3.14)

wherer; andr, represent the ideal real roots, and tfgeare statistically independent complex
errors. Consequently, the related complex conjugate setegits will appear in the form:

z2i=r+e€ (3.15)
Zy =To+ €5 . (3.16)
As a consequence of the fact that complex conjugation doeslteo a real number, it will turn

out that complex phased averaging according to (3.9) wéllltein the following averaged real
root estimates:

1 1
21:i(zl—l—zf):r1+§(61—|—6f)=7“1+€1 ; (3.17)
1 1
29 :5(22+z§):r2+§(62+e§):7“2+€2 , (3.18)
where:
~ 1 *
=5 (e1+e€1) (3.19)
1
=g(etea) (3.20)

are real errors, because the annoying complex error comfgooancel out perfectly, as desired.
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4. Examples

In this section, we demonstrate the effectiveness iaf polzeros for two important classes
of polynomials, namely high-degree random coefficient poigials and high-degree low coef-
ficient variance deterministic polynomials like, for inste, the z-transforms of complex chirp
sequences and the z-transfer functions of linear phase finfiulse response (FIR) filters.

As a performance criterion we use thlesolute root erroof root numberk denoted by

Ep =z —Zk| 4.1)

wherez; is a root obtained from a quadruple precision referenceritifig andz;, denotes a root
estimate, obtained either frofit_polzeros or from POLZEROS. E}, is computed for every esti-
mated root, even if tens of thousands of roots are evaludteese absolute root errors are either
concatenated and displayed like a time series, or they atistgtally evaluated in terms of the
probability that anE;,, exceeds a reference error. These “exceeding error” cuamede inter-
preted as th&®eceiver Operating Characteristi¢ROC) [19] of a root estimator as they display
the probability that an absolute root error exceeds a meéererror level which plays the role
of a discriminator threshold. These “exceeding error” orQR€urves are most instructive in the
evaluation of root estimation errors.

4.1 Complex Random Coefficient Polynomials.In the first series of experiments, the coef-
ficients are generated as a complex nearly Gaussian distlitaero-mean white noise random
processes. Polynomials of this kind are encountered irraleveportant application areas, such
as geophysical exploration, underwater acoustics, ragaalsprocessing, and time series anal-
ysis in general. As a consequence of the limited variancéaeif toefficients, polynomials of
this class can be rooted up to virtually almost unlimitedrdeg. Moreover, we shall observe
that the roots of these polynomials can be computed amgzaugiurately if a proper algorithm
is used, even in cases where it is practically impossiblgtvate with multiprecision algorithms
like MPSolve [11], because of the excessive runtimes ofipreitision software.

Fig. 1 shows the root scatter plot of a typieal= 1000 complex random coefficent polyno-
mial.

imaginary part
o
T

real part

Figure 1: Typical root distribution in the complex randonefficients scenario of degree =
1000.
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We can see that most of the roots are grouped very tightlynarthe unit circle in the z-plane in
cases of high-degree polynomials with low coefficient vac&a However, some roots may lie far
from the unit circle to accomodate the arithmetic and gedmeteans of all roots, as constituted
by the first and the last elements of the coefficient sequence.

In the first experiment, we generate 10 statistically indeleat complex random coefficient
polynomials of degre@ = 1000 and estimate their roots using tABLZEROS algorithm on the
one hand, and theéit_polzeros algorithm on the other hand. In both cases, we compute the
absolute root errors according to (4.1) and concatenatbesk root errors of the 10 experiments
to a virtual “time series” of 10000 absolute error sampleg. B shows these absolute root error
sequences for the two algorithms under study. Throughasitptiper, results obtained from the
POLZEROS program are labeled by “ABE” while results from the new paogrfit_polzeros are
labeled by “FIT".

le-012 T T T T T T T T T
1e-013

1le-014 ;‘
J

1e-015 |
|

1e-016

absolute root error

1e-017 |

1e-018 ! ! ! ! ! I ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

root number

le-012 T T T T T T T T

FiT
1e-013

le-014
1le-015

1e-016 |

absolute root error

1e-017 i "

1e-018 ! ! ! ! ! ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

root number

Figure 2: Absolute root errors of 10 trial runs of random fioets scenaria = 1000. Results
of POLZEROS labeled by ABE. Results of fit_polzeros labelgdr .

It is apparent from the absolute error sequences display&ii 2 thatPOLZERQS suffers from

a relatively high variance of the root errors. However, im tasts all these root estimates are
well located inside the inner basin of attraction of the gashg refinement algorithm described
in Section 2 of this paper. This post-fitting algorithm is &on a linear Taylor series expan-
sion of a fitting error. Consequently, its convergence initimeer basin of attraction is locally
quadratic. When initialized with a root estimate from ®@LZEROS algorithm, this post-fitter
will approximately doublethe number of accurate digits in a single iteration in outstegth
random coefficient polynomials. If a doubling of the numb&rccurate digits is prevented by
the given numerical resolution, the algorithm produces estimates with ark;, in the range of
the machine precision. In the case of standard double aasithmetic, we can expect values
of £, =~ le — 16 or lower. We can easily verify from Fig. 2, that this is welkiséed here.
Moreover, this property is almost independent of the degrefthe polynomials under study. So
this kind of post-fitting realizes almost perfectly an erpound for the class of complex random
coefficient polynomials and similarly for the two other das of tested polynomials.
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This is also confirmed by the corresponding exceeding eunres for this experiment, as dis-
played in Fig. 3. The curves in Fig. 3 show the probabilityt thaoot error exceeds a reference
error level. For instance, the solid line curve in Fig. 3 cmidfithat after post-fitting, the probabil-
ity that anE, exceeds a value of 1e-16 vanishes almost perfectly. On be band, the dashed
line curve in Fig. 3 shows the typical error characterist€she plainPOLZEROS algorithm for
this class of polynomials: The errors spread out to unnacéssarge values, with a ramp-like
tail characteristics of the exceeding error curve whicheig\characteristic for this estimator.

1

0.8 -

0.6

04 -

0.2

probability of exceeding the reference error

0 I I T I
le-018 le-017 1le-016 1le-015 le-014 1le-013 le-012
reference error

Figure 3: Probability that an absolute root error exceedsference error level in the random
coefficients scenario = 1000 of Fig. 2. Dashed line POLZEROS Solid line fit_polzeros.

We can proceed with running some more experiments of this liynsuccessively increasing the
polynomial degree.. The following cases have been studied:

e 32 statistically independent polynomials of degree: 2000

16 statistically independent polynomials of degree: 4000

8 statistically independent polynomials of degree- 8000

4 statistically independent polynomials of degree- 16000

2 statistically independent polynomials of degree- 32000
e 1 polynomial of degree = 64000

In each of these cases, we obtain concatenated error seguafitd000 samples each, amenable
to a statistical evaluation. Fig. 4 shows the exceedingr emoves for each of these 6 cases,
individually displayed for the?OLZERQS and thefit_polzeros algorithms, where the 6 curves
for POLZERQOS appear as dashed lines and the 6 curves{or polzeros appear as solid lines in
Fig. 4.

The most instructive result of this experiment is that thadvidual curves of the exceeding
errors offit_polzeros for polynomials of increasing degrees are almost idenaca match
almost perfectly. This shows that the estimation accurdtlji® algorithm is largelyindependent
of the polynomial degree for this class of complex randonifaeent polynomials and that the
errors appear almost perfectly bounded by the machinegiwedevel of~ 1e—16. This property
will not hold for every algorithm. For instance, we can seeeHeom the dashed curves of the
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POLZERQS exceeding errors, that these curves again show the typicgd-tike tail characteristics,
and additionally, grow successively to larger averagergmdith increasing degree.

o
©
T

o
o
T

N
IS
T

0.2

probability of exceeding the reference error

N

0 1 1 =
le-018 le-017 le-016 le-015 le-014 1e-013 le-012
reference error

Figure 4: Probability that an absolute root error exceedsexrence error level in random coef-
ficient scenarios of growing degree. Cas@sx n = 2000, 16 x n = 4000, 8 x n = 8000,

4 x n = 16000, 2 x n = 32000, and1 x n = 64000 examined Dashed linesPOLZEROS Solid
lines fit_polzeros.

Fig. 5 shows the underlying;. sequences for the two algorithrRBLZEROS andfit_polzeros
in the case of the = 64000 polynomial.

1le-012 T

ABE

1e-013

le-014

1le-015

1le-016

absolute root error

1e-017 |

1e-018 “‘m L 1 | I I 1 M
0

10000 20000 30000 40000 50000 60000
root number

1le-012

1e-013

le-014

1e-015

1le-016

absolute root error

1le-017

1le-018 . L L
0 10000 20000 30000 40000 50000 60000

root number

Figure 5: Absolute root errors of one trial run of random &ogfnt scenario. = 64000. Results
of POLZEROS labeled by ABE. Results of fit_polzeros labeled .

We can see that the largest errorsPOL.ZERQGS in this case are in the range of 1e-13, while the
errors offit_polzeros appear almost perfectly upper bounded by a value of 1e-16cédpost-
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fitting decreases the estimation errors at least by a fatttH@D in the best cases in this example
of a high-degree complex random coefficient polynomial.

4.2 Complex Linear Chirp Signal. Fig. 6 shows the real and imaginary parts of a complex
linear chirp signal of duration 2001 samples with partiahHiag nosef/tail taper and a normalized
angular frequency ranging from = 0.087 up tow = 0.487. We are interested in computing all
roots of the z-transform of this complex chirp, giving riseat complex root finding problem of
degreen = 2000.

Fig. 7 displays the roots of the z-transform of the given claxpnear chirp signal computed
by fit_polzeros. We can see that in this case, the roots appear again vetlytlgted up
around the unit circle in the z-plane.

real part chirp signal

1 1 1
0 500 1000 1500 2000
sample number

T T T

imag part chirp signal

1 1 1
0 500 1000 1500 2000
sample number

Figure 6: Real and imaginary parts of a complex chirp sighdusation 2001 samples.

05

imaginary part
o
T

1 1 1 1 1
-1 -0.5 0 0.5 1
real part

Figure 7: Root distribution of the = 2000 complex linear chirp z-transform polynomial.

28



P. Strobach

Fig. 8 shows the corresponding absolute root error seqadocehe two algorithm®0LZEROS

andfit_polzeros.

absolute root error

absolute root error

1le-010 T

le-011 ABE
1le-012 {
1e-013 1}
le-014
le-015
le-016 J§
le-017

16'018 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 16

root number

1
00 1800 2000

le-010 T T

le-011 FIT-POLZEROS
le-012
1le-013
le-014
le-015
1le-016
le-017

1le-018 L L L
0 400 800 1200 1600 2000

sample

Figure 8: Absolute root errors of an = 2000 complex linear chirp z-transform polynomial.
Results of POLZEROS labeled by ABE. Results of fit_polzeabeled by FIT.

We can see thatit_polzeros will upper bound the absolute roots errorsdyle — 16 again,
while the errors 0POLZERQOS are excessively high, as expected. This observation isalsdirmed
by the corresponding exceeding error curves as displayEdyird.

probability of exceeding the reference error

¢ J Y R VY BT B S I R
1e-018 1e-017 1e-016 1e-015 1e-014 1e-013 1e-012 1e-011 1e-010
reference error

Figure 9: Probability that an absolute root error exceedsference error level in the complex

chirp scenarim = 2000.

Dashed line POLZEROS Solid line fit_polzeros.

A comparison of the exceeding error characteristid®@EZEROS in this case of the complex chirp

(Fig. 9) with the exceed
nomial as shown in Fig.

ing error curvesRIFLZERQS in the case of the random coefficient poly-
4 reveals that we must accept an addltsubstantial increase of error
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level in the case dPOLZEROS, if a chirp polynomial instead of a random coefficient polymal is
used. The estimation accuracyfdft_polzeros, on the other hand, remains totally unaltered by
this change from a random coefficient to a deterministicpecboefficient sequence. In summary,
we conclude that in this example, a post-fitting refinemefitimiprove the root estimates by a
factor of more than 10000 in the best cases.

4.3 Linear FIR Filter z-Transfer Functions. We are now moving to real coefficient polynomials.
Practically interesting cases here are impulse respofisggndegree linear phase FIR filters and
the roots of their z-transforms [20]. Fig. 10 shows the irspulesponse of a linear phase FIR
lowpass filter of duration 101 samples.

800
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400

200

impulse response

0 20 40 60 80 100
sample number

Figure 10: Impulse response of an= 100 linear phase FIR lowpass filter.

The computation of the roots of the corresponding z-trarfsfection of this filter id ann = 100
real polynomial root finding problem. In all cases of thiskiwith real coefficient polyno-
mials, we apply complex phased averaging, as describeddtio8e3, to both thePOLZEROS
and fit_polzeros estimation results. The so extended programs are consgguenamed
r_POLZEROS andr_fit_polzeros, respectively.

Fig. 11 shows the corresponding root scatter plot of thaasfier function of this linear phase
FIR lowpass filter of orden = 100, computed using_fit_polzeros. We can see that this root
scatter plot shows the typical tube-like characteristicthe root locations in the passband of the
filter.
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Figure 11: Roots of the z-transform of the = 100 linear phase FIR lowpass filter impulse
response.
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Fig 12 shows the corresponding sequences of absolute roos$ess obtained using POLZEROS
on the one hand, and fit_polzeros on the other hand as root estimators.
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Figure 12: Absolute root errors in the= 100 linear phase FIR lowpass filter scenario. Results
of r_POLZEROS labeled by ABE. Results of r_fit_polzeros lebéy FIT.

We can see that these impulse response sequences no loagetteh bounded variance char-
acteristics of the coefficients as well as the former randonh éhirp sequences. Hence, as a
consequence of higher coefficient variances, the root astm errors will grow to larger val-
ues. The absolute root estimation errors grow to maximumegbf~ 1le — 15 in the case of
r_fit_polzeros, and even to maximum values ofle — 12 in the case ot _POLZEROS. How-
ever, a substantial reduction of the estimation errors @&@ragchieved by using the post-fitting
refinement concept.

A second experiment of this kind with a linear phase FIR losgpaf much higher degree
n = 1000 is finally examined. Fig. 13 shows the corresponding impusponse of duration
1001 samples.
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Figure 13: Impulse response of an= 1000 linear phase FIR lowpass filter.
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Fig. 14 shows the roots of the corresponding z-transfertiomaf this filter, computed using

r_fit_polzeros.
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Figure 14: Roots of the z-transform of tlhe= 1000 linear phase FIR lowpass filter impulse

response.

A comparison with the root scatter plot of the= 100 filter of Fig. 11 reveals that this higher
degree filter has a much lower relative bandwidth, charaesrby a short and narrow tube of
passband roots around= 1 in the z-plane. The stopband roots are all perfectly linedmuphe
unit circle in the z-plane of Fig. 14.

Fig. 15 shows the corresponding absolute root error seg@gendhese sequences con-
firm an impressive improvement of estimation accuracy byctofaof 10000 approximately for
r_fit_polzeros over the plainc_POLZERQS algorithm.
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Figure 15: Absolute root errors in the= 1000 linear phase FIR lowpass filter scenario. Results
of r_POLZEROS labeled by ABE. Results of r_fit_polzeros lebéy FIT.
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4.4 Runtimes. A final concern are the runtimes of the two algorithms undengarison. As a
rule of thumb, we found that the runtime Bft_polzeros is approximately by a factor of 2.0 -
2.5 higher than the runtime of the conventioral.ZEROS algorithm. Table 1 shows the practical
runtimes for the random coefficients scenario of growingeeg. In the other cases, we observed
very similar runtimes. This indicates that the overall het of the algorithms will not depend
significantly on the characteristics the particular cogffitset as long as we stay within this class
of high-degree polynomials with relatively limited coeiént variations, as typical in application
areas like signal processing.

Table 1: Runtimes (in seconds) of the plain POLZEROS (ABHE)finpolzeros (FIT) algorithms
for rooting of one complex random coefficient polynomial efydeen.

‘ degreen 1000 2000 4000 8000 16000 32000 64q00
ABE 0.123 0.483 1.89 7.34 2936 117.6 474
FIT 0.300 1.136 4.50 13.89 62.26 256.7 1219
factor 244 235 237 189 212 2.18 2.57

5. Conclusions

We introduced the principle of complex polynomial fittingasiseful tool for a post-refinement
of complex root estimates. The method requires coarse stih@&es from a basic root finding
algorithm as inputs. We found thROLZERQS is well suited as initial estimator, because the al-
gorithm is fast, reliable and sufficiently accurate for thigialization of the root estimates inside
the inner basin of attraction of the post-fitting refinemdgoedthm. Experiments have revealed
that the post-fitting refinement step significantly improtlesestimation accuracy in many cases
of practical interest. The deeper reasons for the demaedtperformance ofit_polzeros are
twofold: On the one hand, both the error equation (2.9) a$ agethe Jacobian (2.25) are only
linear functions of the underlying coefficients. This résuh a relatively large inner basin of at-
traction with the consequence that the algorithm adaptksewveh in cases of relatively inaccurate
initial root estimates. On the other hand, thand~ parameters used for computing the update
Ac according to (2.32) are both computed by orthogonal filt2r37)-(2.39) and (2.40)-(2.42),
andnotby the transversal filters (2.33) and (2.34). This seeminghor implementation detail is
in reality the key to the demonstrated numerical accuradyi of polzeros, particularly in cases
of excessively high polynomial degrees
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