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Abstract

In this paper, an augmentation preconditioner for asymmetric saddle point problems with singular
(1,1) blocks is introduced on the base of the recent article by He and Huang [Two augmentation
preconditioners for nonsymmetric and indefinite saddle point linear systems with singular (1, 1)
blocks, Comput. Math. Appl., 62 (2011) 87-92]. We study the spectral characteristics of the
preconditioned matrix in detail. Theoretical analysis shows that all the eigenvalues of the
preconditioned matrix are strongly clustered. Numerical experiments are given to demonstrate the
efficiency of the presented preconditioner.
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1. Introduction
Consider the following general nonsingular saddle point problems:

=b, (1)

e
where 4e R™ and B,C € R™ have full rank. Without loss of generality, we assume that K is
nonsingular and A is singular with nullity. The form of (1) frequently occurs in a large number of
applications, such as the (linearized) Navier-Stokes equations [1,15,18], the time-harmonic
Maxwell equations [2-4,16,17], the linear programming (LP) problem and the quadratic
programming (QP) problem [5-6]. In recent years, a great deal of effort has been made to solve
saddle point problems. Most of the work has aimed at developing effective preconditioning
techniques [7].

Recently, He and Huang [8] introduced the following preconditioners:

p_|4+BWC B
1 C _I
and
p_|A+BTC B’
: c —c(4+BTw oy BT

where B, P, Wand A+ B "W 'C are invertible. It was shown that if 4 is singular with nullity

s, then the eigenvalue distribution of the preconditioned matrix P 'K is as follows: 1 with
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algebraic multiplicity n-m, %(i2 = - 1) with algebraic multiplicity 2s and the remaining

eigenvalues satisfying £+ (/73% with algebraic multiplicity 2(m-s), where d is the generalized

eigenvalues of dAx= B"W™ 'Cx . The eigenvalue distribution of 2'K and P,'K have a similar
conclusion [8]. Obviously, this is favorable to Krylov subspace methods, which rely on the matrix-
vector products and the number of distinct eigenvalues and eigenvectors of the preconditioned
matrix [9,10,14]. It is well-known fact that the preconditioning technique attempts to make the
spectral property better to improve the rate of convergence of Krylov subspace mehtods [11].

In the light of the preconditioning idea, this paper is devoted to giving a new augmentation

preconditioner for saddle point linear systems (1), that is to say:

[a+BTwe a+2)8”
1-2)c )

where T, Wand A+ B"W ™ 'C are invertible. Obviously, the preconditioner T is different from

the preconditioners F} and P,. It is shown that, in contrast to augmentation preconditioners £ and

P,, all the eigenvalues of the proposed new preconditioned matrix are more strongly clustered.
Numerical experiments show that the new preconditioner is slightly more efficient than the

preconditioner £ .

Forming the preconditioners £, P, and 7 may be computationally expensive (in particular

setting up the Schur complement and solving for it) and in practice cheaper alternatives must be
sought. Nevertheless, understanding the spectral properties of £}, P, and T is useful since it can

illustrate the behavior of preconditioners based on approximations of their components. Therefore,
our focus throughout this paper is on the analysis. Finally, numerical experiments are reported to

confirm the presented results and illustrate the efficiency of the presented preconditioner.

2. Main Results

To conveniently discuss, the following two lemmas are required.
Lemma 2.1 [12]
If the asymmetric coefficient matrix
[ T
B 4 B
ic 0
is nonsingular, then
rank(B) = rank(C) = m, N(A)NN(C) = {0} and N4 )NT(B) = {0}.

where N(-) denotes the null space of matrix.

Lemma 2.2 [12]
If the asymmetric coefficient matrix
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o la BT

ic o
is nonsingular, then the rank of the matrix A is at least n-m, and hence its nullity is at most m.
The following theorem provides the eigenvalue distribution of the preconditioned matrix 77K .

Theorem 2.1
Suppose that K is nonsingular and that its (1,1) block A is singular with nullity s (s<<m), then

J=1 is an eigenvalue of 77'K with geometric multiplicity n-m+2s. The remaining 2(m-s)
eigenvalues satisfy the relation:
A= o ,
2+0
where J are the generalized eigenvalues defined by
v =B"W'Cvy 2
Let {z,}'" be a basis of N(C) and {z;};_, a basis of N(4). Then a set of linear independent

eigenvectors corresponding to A=1 can be found: the n-m vectors [z',0"]" and the 2s vectors

[x", -2 'Cx)' T

Proof.
Let A be an eigenvalue of 7~'K with eigenvector[v',g" ]'. Then:
4 B A+ BT 1+V2)BT
c 0 1—2)c 2w |le
which can be rewritten into:
Av+ Blg = \NA+ BT o+ (1+2)0B g, (3)
Cv = (1—+/2)ACv — 2077g. (4)
Since K is nonsingular, it is not difficult to obtain that A #0 and v # 0. By (4), we get:
(1—v2)x—1
=—5n 7

v v
=}

E?l

iy,
Substituting it into (3) yields:
2007 = NAv+ A=) BTm 'cv=0. (5)
If ve N(C), then (5) implies that:
2N =) Av=0.

It follows that 1 =1 and let {z,}|" be a basis of N(C), then n-m vectors [Z[T,OT]T are linearly
independent eigenvectors associated with 4 = 1.

If ve N(A) then from (5) we obtain:

(A—=1"B'm'cv=o.
from which it follows that A = 1 and 2s vectors [x_T,—%(W' 'Cx,)'1" are linearly independent

eigenvectors associated with A = 1.

Assume that A # 1. Combining (2) with (5) yields:
2007 =) = -850 —1)
It is easy to see that the rest 2(m-s) eigenvalues satisfy
3=

o

246

(6)
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Remark 2.1

(6) gives an explicit formula in terms of the generalized eigenvalues of (5) and becomes tightly
clustered as 6 —> o . Since 4 is a strictly increasing function of é on (0,%), it is easy to see that
the remaining eigenvalues 4 — 1 as & — o . The simplest choice is that W ™' =4 (y >0) [16],
which leads to the rest 2(m-s) eigenvalues satisfying:

A=

|.'-.I

2448

where ¢ are the generalized eigenvalue defined by d4x = B” Cx . Obviously, the parameter y should
be chosen to be large such that the eigenvalues are strongly clustered, but not too large such that
the (2,2) block of 7' is too near singular. In actual implementation, for simplicity, the choice of the
matrix W is often a scalar matrix.

From Lemma 2.2 , it is easy to get that the nullity of 4 is at most m. Theorem 2.1 shows that
the higher it is, the more strongly the eigenvalues are clustered. Combining Lemma 2.2 with
Theorem 2.1, the following theorem is given.

Theorem 2.2
Suppose that K is nonsingular and that its (1,1) block A is singular with nullity m. Then A =1

is an eigenvalue of 77'K with geometric multiplicity n-+m.

The important consequence of Theorem 2.2 is that the preconditioned matrix 7~'K have
minimal polynomials of degree at most 1. Therefore, Krylov subspace methods like GMRES

applied to the preconditioned linear systems with coefficient matrix 7~'K converge in one step if
roundoff errors are ignored.

3. Numerical Experiments

In this section, some numerical examples are reported to demonstrate the performance of two
preconditioners 7' and £ . In our numerical experiments, all the computations are done with
MATLAB 7.0.

Example 1. Consider the following Oseen problem:

{-vﬂm +w-gradu +gradp= f, inQ, ;

—divu =0, in . O
with suitable boundary condition on 6Q , where w is given such that div(w)=0, v is the
viscosity. In our experiments, two values of the viscosity parameter are used for the Oseen
equation: v=1 and v= 0.01. The test problems are leaky two-dimensional lid-driven cavity
problem in square (0 <x<1.0<y<1). Using IFISS [13] to discretize (7), we take a finite element
subdivision based on uniform grid of square element. The mixed finite element used is the bilinear
constant-velocity-pressure Q, - F, pair with stabilization (the stabilization parameter is chosen to
1/4). We get the (1,1) block A of the coefficient matrix corresponding to the discretization of the

conservative term is positive real, i.e., 4+ A’ is symmetric positive definite. Since the matrix B
produced by this package is rank deficient, we drop the first two rows of B to get a full rank
matrix. Corresponding to B, we also drop the first two rows and columns of the (2, 2) block. The

matrix K arises from the discretization of the Oseen equations (7) and is of the form as follows:

R B,
K= F, B'|
|B. B, 0

To introduce the form (1), the matrices [Bu , BV] and [B,, ij. are replaced by a random matrix
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C with the same sparsity as [Bu , BV] and a random matrix B” with the same sparsity as [B,, B, T ,
respectively. C(1:m,1:m) and B(1:m,1:m) are replaced by C = é(l :m,1:m)- 21 and

B = é(l :m,1:m)- 31, respectively, such that C, and B, are nonsingular.

2 "m?>
Define C, = é(l:m,m+ l:n) and B, = f?(l:m,er 1:n), then we have C= [C|,C,] and
B=[B,,B,] with B,,C, e R™ and B,,C, € R™"™™ . The above strategy leads to the following
saddle point-type matrix:

with

rank(C)= rank(B)= m.
From Lemma 2.2, noting that the nullity of 4 is at most m, we construct the following saddle
point-type matrices:

a4 BT
E =" _i=12.

cC 0]
where 4. is constructed from A by filling its first i x m /2 rows and columns with zero entries. In

this case, the real matrix 4, is positive semidefinite matrix and its nullity is i xm /2. We take two
meshes 4: 1/16, 1/32.

In our numerical computations, the matrix W in the augmentation block precoditioners is taken
as W= 1. The incomplete LU factorization of 4,+ B'C (i=1,2) with drop tolerance

r=0.0001 is used. Figure 1 plots the eigenvalues of K, P"'K and T7'K for v= 0.01 and
h=1/16, where left in Figure 1 corresponds to nullity m and right in Figure 1 corresponds to nullity
m/2.

From Figure 1, it is easy to see that the preconditioners 7" and F, indeed make the spectrum of

the coefficient matrix K better. It can clearly see that the higher the nullity of the (1,1) block is,
the stronger the eigenvalues of the preconditioned matrices are clustered. The preconditioned

matrix 7 'K has only one clustering points: 1. The preconditioned matrix P 'K has three

clustering points: 1 and (1£i)/2. The clustering degree of the preconditioned matrix 7K is

superior to that of the preconditioned matrix P~'K .

In the sequence, we will use the preconditioned GMRES(/) to solve the corresponding saddle
point linear systems (1), where the right-hand side fis taken such that the solution is all ones. The
purpose of these experiments is just to investigate the influence of the eigenvalue distribution on
the convergence behavior of GMRES(/). In general, the choice of the restart parameter / (/<< n) is
no general rule, which mostly depends on a matter of experience in practice. In our numerical
experiments, for the sake of simplicity, we take /=20.

All tests are started from the zero vector and the stopping criterion is chosen as follows

Hr(k)u2 /“F(O)H2 <107°. In Tables 1 and 2, we present some results to illustrate the convergence

behaviors of GMRES(20) preconditioned by 7" and F. The purpose of these experiments is just

to investigate the influence of the eigenvalue distribution on the convergence behavior of the
GMRES(20) method. "IT" denotes the number of iteration. "CPU(s)" denotes the time (in seconds)
required to solve a problem.
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Table 1 Iteration number and CPU(s) of GMRES(20) with nullity m.
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T (v=1) P (=1 T (v=0.01) P (v=10.01)

IT CPU(s) |IT CPU(s) | IT CPU(s) |IT CPU(s)
16" 16 |5 0.1875 |7 02031 |8 0.1813 |10 0.2813
3232 |21 13.2656 | 22 14.7344 | 21 20.7969 | 31 33.1406

From Tables 1-2, the preconditioners 7 and F, are quite competitive in terms of convergence
rate, robustness and efficiency. Further, it is easy to see that the preconditioner 7" outperforms the
preconditioner F, from the iteration numbers and CPU's time. Compared with the preconditioner

F, the preconditioner 7' may be preferentially considered under certain conditions.
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Table 2 Iteration number and CPU(s) of GMRES(20) with nullity /2.

T (v=1) P(v=1) T (v=0.01) P(v=0.01)

IT CPU(s) |IT CPU(s) |IT CPU(s) |IT CPU(s)
16" 16 | 18 0.6719 |19 0.7656 |9 03594 |13 0.4531
32" 32 |23 26.2969 | 23 26.9219 | 15 25.8906 | 19 31.9375

Example 2. A matrix from the UF Sparse Matrix Collection.

The test matrix is Garon/Garonl, coming from UF Sparse Matrix Collection, which is an ill-
conditioned matrix arising from computation fluid dynamics problem. The characteristics of the
test matrix are listed in Table 3: see [19] for details.

Table 3 Characteristics of the test matrix from the UF Sparse Matrix Collection.

Matrix name n m nnz(A) | nnz(B) | nnz((C))
Garon/Garonl | 2775 400 58949 12889 12885

Table 4 Iteration number and CPU(s) of GMRES(20).

r I
IT CPU(s) | IT CPU(s)
10 2.2190 | 20 4.3900

.
—p1
——T

1og(10(Ir™ 41r1)

. . . .
5 10 15 20 25
Iteraton number

Fig. 2 Iteration number of GMRES(20)

The numerical results from using the GMRES(20) method with two preconditioners 7' and £

to solve the systems of linear equations with the coefficient matrix of Garon/Garonl are given in
Table 4, and Figure 2 corresponds to Table 4.
From Table 4 and Figure 2, it is not difficult to find that the preconditioner 7" outperforms the

preconditioner F. In other words, compared with the preconditioner F,, the preconditioner 7' is

more feasible and competitive.

4, Conclusions

By the current research, we have presented a new augmentation preconditioner for asymmetric
saddle point problems with singular (1,1) blocks. The spectral characteristics of the preconditioned
matrix have been discussed in detail. Theoretical analysis shows that all the eigenvalues of the
preconditioned matrix are more strongly clustered than that of the preconditioned matrix in [8].
Numerical experiments are given to demonstrate the efficiency of the presented preconditioner.
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