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Abstract 
In this paper, an augmentation preconditioner for asymmetric saddle point problems with singular 
(1,1) blocks is introduced on the base of the recent article by He and  Huang [Two augmentation 
preconditioners for nonsymmetric and indefinite saddle point linear systems with singular (1, 1) 
blocks, Comput. Math. Appl., 62 (2011) 87-92]. We study the spectral characteristics of the 
preconditioned matrix in detail. Theoretical analysis shows that all the eigenvalues of the 
preconditioned matrix are strongly clustered. Numerical experiments are given to demonstrate the 
efficiency of the presented preconditioner.    
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1. Introduction 

Consider the following general nonsingular saddle point problems: 
 

                          
where nxnRA∈  and  have full rank. Without loss of generality, we assume that mxnRCB ∈, K is 

nonsingular and  A  is singular with nullity. The form of (1) frequently occurs in a large number of 

applications, such as the (linearized) Navier-Stokes equations [1,15,18], the time-harmonic 

Maxwell equations [2-4,16,17], the linear programming (LP) problem and the quadratic 

programming (QP) problem [5-6]. In recent years, a great deal of effort has been made to solve 

saddle point problems. Most of the work has aimed at developing effective preconditioning 

techniques [7]. 

Recently, He and Huang [8] introduced the following preconditioners: 

 
and 

 

where , , W and 1P 2P 1TA B W C-+  are invertible. It was shown that if A  is singular with nullity 

s, then the eigenvalue distribution of the preconditioned matrix  is as follows: 1 withKP 1
1
−
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algebraic multiplicity n-m, 21
2 (i i ± = - 1) with algebraic multiplicity 2s and the remaining 

eigenvalues satisfying 1 1 2
2 1 2

d
d -

+±  with algebraic multiplicity 2(m-s), where d  is the generalized 

eigenvalues of 1TAx B W Cxd -= . The eigenvalue distribution of  and  have a similar 

conclusion [8]. Obviously, this is favorable to Krylov subspace methods, which rely on the matrix-

vector products and the number of distinct eigenvalues and eigenvectors of the preconditioned 

matrix [9,10,14]. It is well-known fact that the preconditioning technique attempts to make the 

spectral property better to improve the rate of convergence of Krylov subspace mehtods [11]. 

KP 1
1
− KP2

−1

In the light of the preconditioning idea, this paper is devoted to giving a new augmentation 

preconditioner for saddle point linear systems (1), that is to say: 

 

where T , W and 1TA B W C-+  are invertible. Obviously, the preconditioner T  is different from 

the preconditioners  and . It is shown that, in contrast to augmentation preconditioners  and 

, all the eigenvalues of the proposed new preconditioned matrix are more strongly clustered. 

Numerical experiments show that the new preconditioner is slightly more efficient than the 

preconditioner . 

1P 2P 1P

2P

1P

Forming the preconditioners ,  and  may be computationally expensive (in particular 

setting up the Schur complement and solving for it) and in practice cheaper alternatives must be 

sought. Nevertheless, understanding the spectral properties of ,  and T  is useful since it can 

illustrate the behavior of preconditioners based on approximations of their components.  Therefore, 

our focus throughout this paper is on the analysis. Finally, numerical experiments are reported to 

confirm the presented results and illustrate the efficiency of the presented preconditioner. 

1P 2P T

1P 2P

 
 
2.  Main Results 

To conveniently discuss,  the following two lemmas are required. 
Lemma 2.1 [12]  
If the asymmetric coefficient matrix 

 
is nonsingular, then 

 
where N(·) denotes the null space of matrix. 

 
Lemma 2.2 [12] 
 If the asymmetric coefficient matrix 
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is nonsingular, then the rank of the matrix A  is at least n-m, and hence its nullity is at most m. 

The following theorem provides the eigenvalue distribution of the preconditioned matrix KT 1− . 
 
Theorem 2.1  
Suppose that K  is nonsingular and that its (1,1) block A  is singular with nullity s (s<<m),  then 

λ=1 is an eigenvalue of KT 1−  with geometric multiplicity n-m+2s. The remaining 2(m-s) 
eigenvalues satisfy the relation: 

  
δ

δλ
+

=
2

, 

where δ are  the generalized eigenvalues defined by 
                                                            (2) CvWBAv T 1−=δ

Let  be a basis of Ν(C) and  a basis of Ν(A). Then a set of linear independent 

eigenvectors corresponding to λ=1 can be found: the n-m vectors [ ,  and the 2s vectors 

mn
iiz −
=1}{ s

iiz 1}{ =

0 ]
i

T T Tz
12

2[ , - ( ) ]
i

T T
ix W Cx- .T  

  
Proof.  

Let λ be an eigenvalue of KT 1−  with eigenvector[ ,  Then: ] .T T Tv q

    
which can be rewritten into: 

                            
Since K  is nonsingular, it is not difficult to obtain that λ ≠ 0  and  v ≠ 0. By (4), we get: 

 
Substituting it into (3) yields: 

                                   
If  , then (5) implies that: )(CNv∈

 
It follows that  λ = 1 and let   be a basis of Ν(C), then n-m vectors [ ,  are linearly 
independent eigenvectors associated with λ = 1. 

1{ }n m
i iz -

= 0 ]
i

T T Tz

If  then from (5) we obtain: )(ANv∈

 
from which it follows that λ = 1 and 2s vectors 12

2[ , - ( ) ]
i

T
ix W Cx- T T  are linearly independent 

eigenvectors associated with λ = 1.   
Assume that λ ≠ 1. Combining (2) with (5) yields: 

 
It is easy to see that the rest 2(m-s) eigenvalues satisfy 
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Remark 2.1  
(6) gives an explicit formula in terms of the generalized eigenvalues of (5) and  becomes tightly 

clustered as ∞→δ . Since  λ  is a strictly increasing function of δ on ),0( ∞ , it is easy to see that 
the remaining eigenvalues 1→λ  as ∞→δ . The simplest choice is that   [16], 
which leads to the rest 2(m-s) eigenvalues satisfying: 

)0(1 >=− γγIW

 
where δ are the generalized eigenvalue defined by . Obviously, the parameter γ should 
be chosen to be large such that the eigenvalues are strongly clustered, but not too large such that 
the (2,2) block of T  is too near singular. In actual implementation, for simplicity, the choice of the 
matrix W  is often a scalar matrix. 

CxBAx T=δ

From Lemma 2.2 , it is easy to get that the nullity of A  is  at most m. Theorem 2.1 shows that 
the higher it is, the more strongly the eigenvalues are clustered. Combining Lemma 2.2 with  
Theorem 2.1, the following theorem is given. 

 
Theorem 2.2  
Suppose that K  is nonsingular and that its (1,1) block A  is singular with nullity m.  Then λ = 1 

is an eigenvalue of KT 1−  with  geometric multiplicity n+m. 
The important consequence of Theorem 2.2 is that the preconditioned matrix KT 1− have 

minimal polynomials of degree at most 1. Therefore, Krylov subspace methods like GMRES 
applied to the preconditioned linear systems with coefficient matrix KT 1−  converge in one step if 
roundoff errors are ignored. 
 
 
3.  Numerical Experiments 

In this section,  some numerical examples are reported to demonstrate the performance of two 
preconditioners  and . In our numerical experiments, all the computations are done with 
MATLAB 7.0. 

T 1P

Example 1. Consider the following Oseen problem: 

                                                
with suitable boundary condition on Ω∂ , where w  is given such that 0)( =ωdiv ,  is the 
viscosity. In our experiments, two values of the viscosity parameter are used for the Oseen 
equation:  and . The test problems are leaky two-dimensional lid-driven cavity 
problem in square 

v

1v = 0.01v =
)10.10( ≤≤≤≤ yx . Using IFISS [13] to discretize (7), we take a finite element 

subdivision based on uniform grid of square element. The mixed finite element used is the bilinear 
constant-velocity-pressure  pair with stabilization (the stabilization parameter is chosen to 
1/4). We get the (1,1) block 

1Q P- 0

A  of the coefficient matrix corresponding to the discretization of the 
conservative term is positive real, i.e., TA A+  is symmetric positive definite. Since the matrix B  
produced by this package is rank deficient, we drop the first two rows of B  to get a full rank 
matrix. Corresponding to B , we also drop the first two rows and columns of the (2, 2) block.  The 
matrix K

)
arises from the discretization of the Oseen equations (7) and is of the form as follows: 

 
To introduce the form (1),  the matrices[ ],u vB B  and [ ], T

u vB B  are replaced by a random matrix 
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Ĉ  with the same sparsity as  [ ],u vB B  and a random matrix ˆ TB  with the same sparsity as [ ], T
u vB B , 

respectively.  and ˆ (1: ,1: )C m m ˆ (1: ,1: )B m m  are replaced by 3
1 m2

ˆ (1: ,1: )C C m m I= -  and 
3

1 2
ˆ(1: ,1: )B B m m I= m- , respectively,  such that  and 1C 1B are nonsingular.  

Define  and , then we have  and 2
ˆ (1: , 1: )C C m m n= + 2

ˆ(1: , 1: )B B m m n= + 1 2[ , ]C C C=

1 2[ , ]B B B=  with  and . The above strategy leads to the following 
saddle point-type matrix: 

mxmRCB ∈11 , )(
22 , mnmxRCB −∈

 
with 

( ) ( ) .rank C rank B m= =  
From Lemma 2.2, noting that the nullity of A  is at most m, we construct the following saddle 
point-type matrices: 

           
where  is constructed from iA A  by filling its first 2/mi ×  rows and columns with zero entries. In 
this case, the real matrix  is positive semidefinite matrix and its nullity is . We take two 
meshes h: 1/16, 1/32. 

iA 2/mi ×

In our numerical computations, the matrix W  in the augmentation block precoditioners is taken 
as . The incomplete LU factorization of   with drop tolerance  mW I= ( 1, 2T

iA B C i  + = )
0001.0=τ is used. Figure 1 plots the eigenvalues of K , KP 1−  and KT 1−  for  and 

h=1/16, where left in Figure 1 corresponds to nullity m and right in Figure 1 corresponds to nullity 
m/2. 

0.01v =

From Figure 1, it is easy to see that the preconditioners T  and  indeed make the spectrum of 
the coefficient matrix 

1P
K  better. It can clearly see that the higher the nullity of the (1,1) block is, 

the stronger the eigenvalues of the preconditioned matrices are clustered.  The preconditioned 
matrix KT 1−  has only one clustering points: 1. The preconditioned matrix KP 1−  has three 
clustering points: 1 and (1±i)/2. The clustering degree of the preconditioned matrix KT 1−  is 

superior to that of the preconditioned matrix KP 1− . 
In the sequence, we will use the preconditioned GMRES(l) to solve the corresponding saddle 

point linear systems (1), where the right-hand side f is taken such that the solution is all ones. The 
purpose of these experiments is just to investigate the influence of the eigenvalue distribution on 
the convergence behavior of GMRES(l). In general, the choice of the restart parameter l (l<< n) is 
no general rule, which mostly depends on  a matter of experience in practice. In our numerical 
experiments, for the sake of simplicity, we take l=20. 

All tests are started from  the zero vector and the stopping criterion is chosen as follows 
6

2
)0(

2
)( 10/ −≤rr k . In Tables 1 and 2, we present some results to illustrate the convergence 

behaviors of GMRES(20) preconditioned by  T  and . The purpose of these experiments is just 
to investigate the influence of the eigenvalue distribution on the convergence behavior of the 
GMRES(20) method. ''IT'' denotes the number of iteration. ''CPU(s)'' denotes the time (in seconds) 
required to solve a problem. 

1P
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Table 1 Iteration number and CPU(s) of GMRES(20) with nullity m. 
 

T ( 1v = ) ) 1P ( 1v =  T ( ) 0.01v = 1P ( ) 0.01v = 

IT CPU(s) IT CPU(s) IT CPU(s) IT CPU(s) 
16 16΄  5 0.1875 7 0.2031 8 0.1813 10 0.2813 
32 32΄  21 13.2656 22 14.7344 21 20.7969 31 33.1406 
 
From Tables 1-2, the preconditioners T  and 1  are quite competitive in terms of convergence 

rate, robustness and efficiency. Further, it is easy to see that the preconditioner T   outperforms the 
preconditioner 1  from the iteration numbers and CPU's time. Compared with the preconditioner 

, the preconditioner T  may be preferentially considered under certain conditions. 

P

P
1P
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Fig. 1 Spectra of the matri K ,  and  . 1
1P K- 1T K-
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Table 2 Iteration number and CPU(s) of GMRES(20) with nullity m/2. 
 
T ( 1v = ) ) 1P ( 1v =  T ( ) 0.01v = 1P ( ) 0.01v = 

IT CPU(s) IT CPU(s) IT CPU(s) IT CPU(s) 
16 16΄  18 0.6719 19 0.7656 9 0.3594 13 0.4531 
32 32΄  23 26.2969 23 26.9219 15 25.8906 19 31.9375 

 
 
Example 2. A matrix from the UF Sparse Matrix Collection. 
The test matrix is Garon/Garon1, coming from UF Sparse Matrix Collection, which is an ill-

conditioned matrix arising from computation fluid dynamics problem. The characteristics of the 
test matrix are listed in Table 3: see [19] for details. 

 
Table 3 Characteristics of the test matrix from the  UF Sparse Matrix Collection. 

 
Matrix name n m nnz ( )A  nnz ( )B  nnz( ) ( )C
Garon/Garon1 2775 400 58949 12889 12885 

 
Table 4 Iteration number and CPU(s) of GMRES(20). 

 
T  1P  
IT CPU(s) IT CPU(s)
10 2.2190 20 4.3900 

 

5 10 15 20 25
−5

−4

−3

−2

−1

0

1

2

Iteraton number

lo
g(

10
(|

|r
(k

) || 
/||

r(0
) ||)

)

P1
T

 
Fig. 2 Iteration number of GMRES(20) 

 
The numerical results from using the GMRES(20) method with two preconditioners T  and  

to solve the systems of linear equations with the coefficient matrix of Garon/Garon1 are given in 
Table 4, and Figure 2 corresponds to Table 4. 

1P

From Table 4 and Figure 2, it is not difficult to find that the preconditioner T  outperforms the 
preconditioner . In other words, compared with the preconditioner , the preconditioner T  is 
more feasible and competitive. 

1P 1P

 
4.  Conclusions 

 By the current research, we have presented a new augmentation preconditioner for asymmetric 
saddle point problems with singular (1,1) blocks. The spectral characteristics of the preconditioned 
matrix have been discussed in detail. Theoretical analysis shows that all the eigenvalues of the 
preconditioned matrix are more strongly clustered than that of the preconditioned matrix in [8]. 
Numerical experiments are given to demonstrate the efficiency of the presented preconditioner. 
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