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Abstract 
In this paper, based on minimization technique and preconditioning technique, a modified search 
direction iteration method is presented to solve the absolute value equations | |Ax x b− = . The 
convergence properties of the proposed method are given. Theoretical analysis shows that the 
proposed method is not only suitable for the real symmetric matrix A , but also suitable for the real 
asymmetric indefinite matrix A . Numerical experiments are reported to demonstrate the 
effectiveness of the proposed method. 
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1. Introduction 

We consider the absolute value equations (AVE) 
| | ,Ax x b− =                                                             (1.1) 

where xnnRA∈ , nRb∈  and | |x denotes all components of the vector nRx∈  by absolute value.  A 
general form of the AVE (1.1) is first introduced in [1] as follows: 

| | ,Ax B x b− =                                                          (1.2) 
which has been investigated in a more general context in [2]. As is known in [5], the general linear 
complementarity problem (LCP) [3], [4] which subsumes many mathematical programming 
problems can be formulated as the AVE (1.1). This implies that the AVE (1.1) is NP-hard in its 
general form [2]. 

In recent years, to efficiently solve the AVE (1.1), some numerical methods have been 
developed, such as the smoothing Newton method [6], the generalized Newton method [7], [9], 
[10], the sign accord method [11]. On other forms of the iteration method, one can see [12]-[14] for 
more details. 

Recently, based on the minimization technique, Noor et al. [15] proposed the following search 
direction iterative scheme for solving the AVE (1.1): 

1 ,k k k kx x vα−= +                                                                (1.3) 

with 1 1| | ,
, ,k k k

k k

Ax x b v
k Cv vα − −− −= − ,C A D= − ( ( )),D diag sign x= ( 1, 2, )kv k = L being the search 

direction, and discussed some convergence properties of the search direction iterative scheme (1.3). 
Numerical experiments are reported to illustrate that this search direction iterative scheme (1.3) is 
feasible. 

By investigating the search direction iterative scheme (1.3), it is not difficult to find that the 
search direction iterative scheme (1.3) is only suitable for the real symmetric matrix A  and the 
symmetric positive definite matrix C . When the involved matrix A  in (1.1) is a real asymmetric 
indefinite matrix A , the search direction iterative scheme (1.3) may be invalid. In this case, it 
needs to establish the modified iterative scheme for solving the AVE (1.1). To overcome this 
disadvantage of the iterative scheme (1.3) and improve the convergence of the iterative scheme 
(1.3), based on the preconditioning technique, a modified search direction iteration method is 
presented to solve the AVE (1.1). Compared with the search direction iterative scheme (1.3), the 
modified search direction iteration method is not only suitable for the real symmetric matrix A , 
but also suitable for the real asymmetric indefinite matrix A . The convergence properties of the
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proposed method are given. Numerical experiments are reported to demonstrate the effectiveness 
of the proposed method. 

For convenience, here briefly explain some terminologies used in the  next section. Let nR  be 
the finite dimension Euclidean space, whose inner product and norm, respectively, are denoted by 

,⋅ ⋅  and ⋅ . For nRx∈ , ( )sign x  denotes a vector with components equal to 1, 0,-1 depending on 
whether the corresponding component of x is positive, zero or negative. The diagonal matrix 

( ) ( ( ))D x diag sign x=  denotes a diagonal matrix corresponding to ( )sign x . We consider the 
matrix A  such that ( )C P A D= −  is positive definite for any arbitrary matrices D  and P . The 
matrix A  is said to be symmetric positive definite if it is symmetric and satisfies 0Tx Ax > for all 

}0{\nRx∈ . The matrix A  is said to be positive definite if its symmetric part  1
2 ( )TA A+ is 

positive definite. 
 
2. Main Results 

In order to accelerate the convergence of the search direction iteration method (1.3) for solving 
the nonlinear system (1.1), preconditioned methods can be used. Based on this fact, we can 
consider the preconditioned AVE (1.1): 

| | ,PAx P x Pb− =                                                                 (2.1) 
where P , called the preconditioner, is a non-singular matrix. Obviously, the form (2.1) is another 
general form of the AVE (1.1), which is different from the form (1.2). When P I= , the form (2.1) 
reduces to the AVE (1.1). 

Based on (1.1) and (2.1), clearly, the following conclusion is obtained and its proof is omitted. 
 

Theorem 2.1 
 The solution of the AVE (1.1) is the same as that of the preconditioned AVE (2.1). 

 
Based on Theorem 2.1 and minimization technique, the following result can be obtained, whose 

proof is similar to the proof of Theorem 2.1 in [15]. 
 

Theorem 2.2 
If ( )PC P A D= −  is positive definite matrix for each nRx∈ , then nRx∈  is a solution of the 
preconditioned AVE (2.1) if and only if nRx∈  is a minimum of the function ( )f x , where: 
 

nRxxPbxxPxPAxxf ∈−−= ,,2,,)(                                        (2.2) 
 

Proof.  Making the substitution PAx  for Ax , | |P x for | |x , and Pb  for b in the proof of 
Theorem 2.1 [15], it is easy to verify that the result in Theorem 2.2 holds.  

 
In [15], the following result was obtained.  
 

Theorem 2.3 [15]  
If C A D= −  is positive definite matrix for each nRx∈ , then nRx∈  is a solution of the AVE 
(1.1) if and only if nRx∈  is a minimum of the function ( )f x , where: 
 

nRxxbxxxAxxf ∈−−= ,,2,,)(                                           (2.3) 
 

Some remarks on Theorems 2.2 and 2.3 are given. 
 
 Clearly, Theorem 2.2 is a generalization of Theorem 2.3. When ,P I=  then Theorem 2.2 
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reduces to Theorem 2.3. 
 
 Compared Theorem 2.2 with Theorem 2.3, obviously, the conditions of Theorem 2.2 may 

be more weaker than that of Theorem 2.3. It is reason that matrix C A D= − in Theorem 
2.2 need not be positive definite matrix, but matrix ( )PC P A D= −  in Theorem 2.2 need 
be positive definite matrix. That is to say, it needs to choose the preconditioner P  make 

( )PC P A D= −  positive definite, which implies that the results of Theorem 2.2 may be 
suitable for the real asymmetric indefinite matrix A  for the AVE (1.1). 

 
Based on Theorem 2.2, a modified search direction iteration method for solving the AVE (1.1) 

can be established below. 
 
Algorithm 1 (A modified search direction iteration method) 
Step 1. Choose an arbitrary vector nRx ∈0  and an initial search direction 1 0.u ≠ Set : 1.k =  

Step 2. If 1 0,k kx x −− =  stop. 

Step 3. Compute kx  by: 

1 , 1, 2, ,k k k kx x u kα−= +   = K                                                    (2.4) 
        where 

     
1 1( | | ),

, .k k k

k k

P Ax x b u
k PCu uα − −− −= −

 
Step 4. Set : 1.k k= +  Go to step 1. 
 

Remark 2.1 Compared with the modified search direction iteration method (2.4) with the 
original search direction iteration method (1.3), the former is a generalization of the latter. Not only 
that, one can choose a proper preconditioner P  such that the former is more efficient than the latter 
(to see the next section). Of course, when one establishes the preconditioner P , it is noted that the 
preconditioner P  should be cheap to construct and apply. 

 
Remark 2.2 It is noted that when k ku e= , where ke  is the kth column of the identity matrix, it 

is not difficult to find that the modified search direction iteration method (2.4) examines the 
preconditioned AVE (2.1) one at a time in sequence and previously computed results are used as 
soon as they are available. Therefore, in this case, the modified search direction iteration method 
(2.4) can be considered as a preconditioned Gauss-Seidel method for solving the AVE (1.1). In our 
numerical experiments, we take k ku e= , some numerical results are reported to illustrate the 
efficiency of the modified search direction iteration method (2.4) (to see next section). 

 
To obtain the local convergence theory of the modified search direction iteration method (2.4), 

here it is necessary to define a vector norm 2 ,
M

x Mx x=  for any nRx∈ , which is called M -
norm. 

 
Theorem 2.4  
Let ( )PC P A D= −  be symmetric, ( )f x be defined in Theorem 2.2. Then the modified search 
direction iteration method (2.4) with k ku e= , where ke  is the kth column of the identity matrix, 

converges linearly to a solution x∗ of the preconditioned AVE (2.1) in PC -norm. 
 

Proof.   Based on Theorem 2.2, we have: 
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PC x x x x PC x x x x
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PAx P x x PAx P x x

f x f x
f x uα

∗ ∗
−
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− −

∗ ∗
− − −

∗ ∗

∗ ∗
− − − −

−

−

   − − −

= − − − − −

= − − −

= − − −

    − − − − 
= −
= + 1( ) 0.kf x −− <

 

Then, 
2 2

1 .k kPC PC
x x x x∗ ∗

−   − < −                                                                   (2.5) 

 
The inequality (2.5) implies that the sequence { }kx  is a Fejer sequence in [16]. Therefore, the 

sequence { }kx  converges linearly to a solution of the preconditioned AVE (2.1) in PC -norm. 
                 
 3. Numerical Experiments 

In this section, we give some numerical experiments to demonstrate the performance of the 
proposed method for solving the AVE (1.1). Here, 'MSR' denotes the modified search direction 
iteration method (2.4) and 'SR' denotes the original search direction iteration method (1.3). We 
compare MSR with SR from the point of view of the number of iterations (denoted as IT) and CPU 
elapsed times (denoted as CPU). All the tests are performed in MATLAB 7.0. 

 
Example 3.1. Let the matrix A  be given by Definition 2.1: 

, 1 1, ,2 , , 0.5, , 1.ii i i i i i ja n a a n a j i i+ += = = = ≠ +  
 

Let ( ) ,b A I e= −  where I is the identity matrix and (1,1, ,1)Te = K  such that (1,1, ,1)Tx = K  is 
the exact solution. The stopping criteria is 6

1 10k kx x −
−− <  and the initial guess is 

0 1 2( , , , )T
nx x x x= K  , 0.001 .ix i=  

 
Table 1  IT and CPU for MSR and SR. 

 
 n  32 64 126 256 

MSR IT 11 11 15 8 
CPU(s) 0.0156 0.125 1.648 16.5 

SR IT 73 137 160 149 
CPU(s) 0.0781 0.3594 1.969 18.3125 

 
In the implementation of the MSR method, it is necessary to choose the appropriate 

preconditioner P  for the MSR method. In our numerical computations, we take the preconditioner 
( )P tridiag A=   to yield the least CPU elapsed times and iteration numbers for the MSR method. 

In this case, Table 1 lists the iteration numbers and CPU elapsed times for the MSR and SR 
methods. Figure 1 plots the iteration numbers of the MSR and SR methods with 32n =  and 

64n = . Similarly, the figure of the iteration numbers of the MSR and SR methods with 126n =  
and 256n =  is plotted as well and here is omitted. 



C.-X. Li, S.-L. Wu 
 

 40 

 
(a) n=32                                                   (b) n=64 

                  Fig. 1  IT of MSR and SR 
 
 
From Table 1, the iteration numbers and CPU elapsed times of the MSR method for solving the 

AVE (1.1) are less than that of the SR method if it is appropriate to choose the preconditioner P . 
That is to say, compared with the SR method, the MSR method for solving the AVE (1.1) may be 
given priority under certain conditions. 

 
4. Conclusions  

In this paper, a modified search direction iteration method has been presented to solve the 
absolute value equations. The convergence properties of the proposed method are discussed. 
Numerical experiments confirm the effectiveness of the proposed method. 
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